<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Beryllium and certain beryllium compounds</td>
<td>25</td>
</tr>
<tr>
<td>12.</td>
<td>(N, N)-Bis(2-chloroethyl)-2-naphthylamine (chlornaphazine)</td>
<td>26</td>
</tr>
<tr>
<td>13.</td>
<td>Bis(chloromethyl)ether and technical grade chloromethyl methyl ether</td>
<td>26</td>
</tr>
<tr>
<td>14.</td>
<td>Cadmium and certain cadmium compounds</td>
<td>27</td>
</tr>
<tr>
<td>15.</td>
<td>Carbon tetrachloride</td>
<td>28</td>
</tr>
<tr>
<td>16.</td>
<td>Chlorambucil</td>
<td>28</td>
</tr>
<tr>
<td>17.</td>
<td>Chloramphenicol</td>
<td>28</td>
</tr>
<tr>
<td>18.</td>
<td>Chlordane and heptachlor</td>
<td>29</td>
</tr>
<tr>
<td>19.</td>
<td>Chloroprene</td>
<td>29</td>
</tr>
<tr>
<td>20.</td>
<td>Chromium and certain chromium compounds</td>
<td>29</td>
</tr>
<tr>
<td>21.</td>
<td>Cyclophosphamide</td>
<td>31</td>
</tr>
<tr>
<td>22.</td>
<td>Dichlorodiphenyltrichloroethane (DDT)</td>
<td>31</td>
</tr>
<tr>
<td>23.</td>
<td>Dieldrin</td>
<td>32</td>
</tr>
<tr>
<td>24.</td>
<td>Diethylstilboestrol</td>
<td>32</td>
</tr>
<tr>
<td>25.</td>
<td>Dimethylcarbamoyl chloride</td>
<td>33</td>
</tr>
<tr>
<td>26.</td>
<td>Dimethyl sulphate</td>
<td>33</td>
</tr>
<tr>
<td>27.</td>
<td>Epichlorohydrin</td>
<td>33</td>
</tr>
<tr>
<td>28.</td>
<td>Ethylene oxide</td>
<td>34</td>
</tr>
<tr>
<td>29.</td>
<td>Haematite</td>
<td>34</td>
</tr>
<tr>
<td>30.</td>
<td>Underground haematite mining</td>
<td>34</td>
</tr>
<tr>
<td>31.</td>
<td>Hexachlorocyclohexane (technical HCH and lindane)</td>
<td>34</td>
</tr>
<tr>
<td>32.</td>
<td>Iron dextran</td>
<td>35</td>
</tr>
<tr>
<td>33.</td>
<td>Isoniazid</td>
<td>35</td>
</tr>
<tr>
<td>34.</td>
<td>Isopropyl oils</td>
<td>36</td>
</tr>
<tr>
<td>35.</td>
<td>The manufacture of isopropyl alcohol (strong acid process)</td>
<td>36</td>
</tr>
<tr>
<td>36.</td>
<td>Lead and certain lead compounds</td>
<td>36</td>
</tr>
<tr>
<td>37.</td>
<td>Melphalan</td>
<td>37</td>
</tr>
<tr>
<td>38.</td>
<td>Mustard gas</td>
<td>38</td>
</tr>
<tr>
<td>39.</td>
<td>2-Naphthylamine</td>
<td>38</td>
</tr>
<tr>
<td>40.</td>
<td>Nickel and certain nickel compounds</td>
<td>38</td>
</tr>
<tr>
<td>41.</td>
<td>Nickel refining</td>
<td>38</td>
</tr>
<tr>
<td>42.</td>
<td>Oxymetholone</td>
<td>39</td>
</tr>
<tr>
<td>43.</td>
<td>Phenacetin</td>
<td>39</td>
</tr>
<tr>
<td>44.</td>
<td>Phenobarbitone</td>
<td>39</td>
</tr>
<tr>
<td>45.</td>
<td>(N)-Phenyl-2-naphthylamine</td>
<td>40</td>
</tr>
<tr>
<td>46.</td>
<td>Phenytoin</td>
<td>41</td>
</tr>
<tr>
<td>47.</td>
<td>Polychlorinated biphenyls</td>
<td>41</td>
</tr>
<tr>
<td>48.</td>
<td>Reserpine</td>
<td>42</td>
</tr>
<tr>
<td>49.</td>
<td>Soots, tars and mineral oils</td>
<td>43</td>
</tr>
<tr>
<td>50.</td>
<td>Styrene</td>
<td>43</td>
</tr>
<tr>
<td>51.</td>
<td>Trichloroethylene</td>
<td>44</td>
</tr>
<tr>
<td>52.</td>
<td>Tris(aziridinyl)-para-benzoquinone (triaziquone)</td>
<td>44</td>
</tr>
<tr>
<td>53.</td>
<td>Tris(1-aziridinyl)phosphine sulphide (thiotepa)</td>
<td>44</td>
</tr>
<tr>
<td>54.</td>
<td>Vinyl chloride</td>
<td>45</td>
</tr>
</tbody>
</table>
ADDITIONAL CHEMICALS WITH EVIDENCE FROM HUMAN STUDIES

A. ortho- and para-Dichlorobenzene
B. 3,3'-Dichlorobenzidine
C. Phenylbutazone
D. 2,3,7,8-Tetrachlordibenzo-para-dioxin (TCDD)
E. ortho-Toluidine
F. Vinylidene chloride

CUMULATIVE INDEX TO IARC MONOGRAPHS VOLUMES 1-20 ON THE EVALUATION OF THE CARCINOGENIC RISK OF CHEMICALS TO HUMANS

INDEX OF CHEMICALS FROM MONOGRAPHS VOLUMES 1-20 BY POSSIBLE TARGET ORGANS IN HUMANS

TABLES:

Table 1. Chemical evaluated in IARC Monographs, Volumes 1-20 for which there is sufficient evidence of carcinogenicity in experimental animals

Table 2. Chemicals from IARC Monographs Volumes 1-20 with evidence from human studies which were not considered by the Working Group

Table 3. Classification of the degree of evidence of carcinogenicity for humans of chemicals or industrial processes
NOTE TO THE READER

The term 'carcinogenic risk' in the IARC Monograph series is taken to mean the probability that exposure to the chemical will lead to cancer in humans.

Inclusion of a chemical in the monographs does not imply that it is a carcinogen, only that the published data have been examined. Equally, the fact that a chemical has not yet been evaluated in a monograph does not mean that it is not carcinogenic.

Anyone who is aware of published data that may alter the evaluation of the carcinogenic risk of a chemical for humans is encouraged to make this information available to the Unit of Chemical Carcinogenesis, International Agency for Research on Cancer, Lyon, France, in order that the chemical may be considered for re-evaluation by a future Working Group.

Although every effort is made to prepare the monographs as accurately as possible, mistakes may occur. Readers are requested to communicate any errors to the Unit of Chemical Carcinogenesis, so that corrections can be reported in future volumes.