
CYCLOPHOSPHAMIDE
Cyclophosphamide was considered by previous IARC Working Groups in 1980 and 1987 
(IARC, 1981, 1987a). Since that time, new data have become available, these have been 
incorporated into the Monograph, and taken into consideration in the present evaluation.

1. Exposure Data

1.1 Identification of the agent

Chem. Abstr. Serv. Reg. No.: 50-18-0
Chem. Abstr. Name: 2H-1,3,2-
Oxazaphosphorin-2-amine, N,N-bis(2-
chloroethyl)tetrahydro-, 2-oxide
IUPAC Systematic Name: N,N-Bis(2-
chloroethyl)-1-oxo-6-oxa-2-aza-1λ5-
phosphacyclohexan-1-amine
Synonyms: 2-[Bis(2-chloroethyl)amino]
tetrahydro-2H-1,3,2-oxazaphosphorin 
2-oxide; bis(2-chloroethyl)phosphoramide 
cyclic propanolamide ester; N,N-bis(β-
chloroethyl)-N′,O-trimethylenephosphoric 
acid ester diamide; N,N-bis(2-chloroethyl)-
N′,O-propylenephosphoric acid ester 
diamide; Cytoxan; Endoxan; Neosar
Description: Crystalline solid [anhydrous 
form] (O’Neil, 2006)

1.1.1 Structural and molecular formulae, and 
relative molecular mass

N

O

P

O

H

N

Cl

Cl

C7H15Cl2N2O2P
Relative molecular mass: 261.1

1.2 Use of the agent 

Cyclophosphamide is an antineoplastic agent 
metabolized to active alkylating metabolites 
with properties similar to those of chlorme-
thine. It also possesses marked immunosup-
pressant properties. It is widely used, often in 
combination with other agents, in the treatment 
of several malignant diseases. Information for 
Section 1.2 is taken from McEvoy, (2007), Royal 
Pharmaceutical Society of Great Britain (2007), 
and Sweetman (2008).
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1.2.1 Indications

Cyclophosphamide is used in the treatment 
of chronic lymphocytic leukaemia, lymphomas, 
soft tissue and osteogenic sarcoma, and solid 
tumours. It is given orally or intravenously. 
Cyclophosphamide is inactive until metabolized 
by the liver.

(a) Hodgkin lymphoma

Cyclophosphamide is used in combination 
regimens (e.g. bleomycin, etoposide, doxoru-
bicin, cyclophosphamide, vincristine, procar-
bazine, and prednisone [known as BEACOPP]) 
for the treatment of Hodgkin lymphoma.

(b) Non-Hodgkin lymphoma

Cyclophosphamide is used in combina-
tion therapy for the treatment of non-Hodgkin 
lymphoma, including high-grade lymphomas, 
such as Burkitt lymphoma and lymphoblastic 
lymphoma, as well as intermediate- and low-
grade lymphomas. Cyclophosphamide is 
commonly used with doxorubicin (hydroxydau-
norubicin), vincristine (oncovin), and prednisone 
(known as the CHOP regimen), with or without 
other agents, in the treatment of various types 
of intermediate-grade non-Hodgkin lymphoma. 
Cyclophosphamide has also been used as a single 
agent in the treatment of low-grade lymphomas.

(c) Multiple myeloma

Cyclophosphamide is used in combination 
with prednisone, or as a component of combina-
tion chemotherapy (i.e. vincristine, carmustine, 
melphalan, cyclophosphamide, and prednisone 
[VBMCP]) for the treatment of multiple myeloma.

(d) Leukaemia

Cyclophosphamide is used commonly for 
the treatment of chronic lymphocytic (lympho-
blastic) leukaemia. Cyclophosphamide is used 
in combination with busulfan as a conditioning 
regimen before allogeneic haematopoietic 

progenitor cell transplantation in patients with 
chronic myelogenous leukaemia.

Cyclophosphamide is used in the treatment 
of acute lymphoblastic leukaemia, especially 
in children. In the treatment of acute myeloid 
(myelogenous, non-lymphocytic) leukaemia, 
cyclophosphamide has been used as an additional 
drug for induction or post-induction therapy.

(e) Cutaneous T-cell lymphoma

Cyclophosphamide is used alone or in combi-
nation regimens for the treatment of advanced 
mycosis fungoides, a form of cutaneous T-cell 
lymphoma.

(f) Neuroblastoma

Cyclophosphamide alone is used in the 
treatment of disseminated neuroblastoma. 
Combination chemotherapy that includes cyclo-
phosphamide is also used for this neoplasm.

(g) Cancer of the ovary

Cyclophosphamide is used in combination 
chemotherapy (vincristine, actinomycin D, and 
cyclophosphamide [VAC]) as an alternative 
regimen for the treatment of ovarian germ-cell 
tumours.

Cyclophosphamide has been used in combi-
nation with a platinum-containing agent for the 
treatment of advanced (Stage III or IV) epithelial 
ovarian cancer.

(h) Retinoblastoma

Cyclophosphamide is used in combination 
therapy for the treatment of retinoblastoma.

(i) Cancer of the breast

Cyclophosphamide is used alone and also in 
combination therapy for the treatment of breast 
cancer.

Combination chemotherapy with cyclo-
phosphamide is used as an adjunct to surgery 
in premenopausal and postmenopausal women 
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with node-negative or -positive early (TNM 
Stage I or II) breast cancer. Adjuvant combina-
tion chemotherapy that includes cyclophospha-
mide, methotrexate, and fluorouracil has been 
used extensively.

Adjuvant combination chemotherapy (e.g. 
cyclophosphamide, methotrexate, and fluo-
rouracil; cyclophosphamide, adriamycin, and 
fluorouracil; cyclophosphamide and adriamycin 
with or without tamoxifen) is used in patients 
with node-positive early breast cancer (Stage II) 
in both premenopausal and postmenopausal 
patients once treatment to control local disease 
(surgery, with or without radiation therapy) has 
been undertaken.

In Stage III (locally advanced) breast cancer, 
combination chemotherapy (with or without 
hormonal therapy) is used sequentially following 
surgery and radiation therapy for operable 
disease or following biopsy and radiation therapy 
for inoperable disease; commonly employed 
effective regimens include cyclophosphamide, 
methotrexate, and fluorouracil; cyclophospha-
mide, doxorubicin, and fluorouracil; and cyclo-
phosphamide, methotrexate, fluorouracil, and 
prednisone. These and other regimens also have 
been used in the treatment of more advanced 
(Stage IV) and recurrent disease.

(j) Small cell cancer of the lung

Cyclophosphamide is used in combination 
chemotherapy regimens (e.g. cyclophosphamide, 
adriamycin, and vincristine [CAV]; cyclophos-
phamide, adriamycin, and etoposide [CAE]) for 
the treatment of extensive-stage small cell lung 
cancer.

(k) Sarcoma

Cyclophosphamide has been used in combi-
nation regimens (usually with dactinomycin and 
vincristine) and as an adjunct to surgery and 
radiation therapy in the treatment of rhabdo-
myosarcoma and Ewing sarcoma.

1.2.2 Dosage

Cyclophosphamide is administered orally 
or by intravenous injection or infusion. Less 
frequently, the drug has been administered 
intramuscularly and by intracavitary (e.g. intra-
pleural, intraperitoneal) injection and direct 
perfusion.

In patients with no haematological deficien-
cies receiving cyclophosphamide monotherapy, 
induction therapy in adults and children is 
usually initiated with an intravenous cyclophos-
phamide loading dose of 40–50  mg/kg admin-
istered in divided doses over 2–5  days. Other 
regimens for intravenous administration include 
10–15 mg/kg every 7–10 days or 3–5 mg/kg twice 
weekly.

When cyclophosphamide is administered 
orally, the usual dose for induction or mainte-
nance therapy is 1–5 mg/kg daily, depending on 
the tolerance of the patient.

A daily oral dose of 2–3 mg/kg for 60–90 days 
has been used in children with nephrotic 
syndrome, and in whom corticosteroids have 
been unsuccessful. In patients who are to undergo 
stem-cell transplantation, very high doses of 
cyclophosphamide such as 60  mg/kg daily for 
2 days may be given as part of the conditioning 
regimen.

Various cyclophosphamide-containing 
combination chemotherapy regimens have been 
used in the treatment of breast cancer. One 
commonly employed regimen for the treatment 
of early breast cancer includes a cyclophospha-
mide dosage of 100  mg/m2 orally on Days 1 
through 14 of each cycle combined with intra-
venous methotrexate at 40 mg/m2 on Days 1 and 
8 of each cycle, and intravenous fluorouracil at 
600  mg/m2 on Days 1 and 8 of each cycle. In 
patients older than 60 years of age, the initial 
intravenous methotrexate dosage is reduced to 
30 mg/m2 and the initial intravenous fluorouracil 
dosage is reduced to 400 mg/m2. Dosage is also 
reduced if myelosuppression develops. Cycles 
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are generally repeated monthly (i.e. allowing a 
2-week rest period between cycles) for a total of 
6–12 cycles (i.e. 6–12 months of therapy).

Cyclophosphamide is available as 25 and 
50  mg tablets for oral administration, and as 
200 mg, 500 mg, 1 g, or 2 g vials of powder for 
reconstitution for parenteral administration.

1.2.3 Trends in use

No information was available to the Working 
Group.

2. Cancer in Humans

The carcinogenicity of cyclophosphamide in 
humans was established initially on the basis of 
a large number of case reports, as well as several 
epidemiological studies (IARC 1981, 1987a). The 
interpretation of the epidemiological studies was 
limited by the small numbers of cases, the diffi-
culty in separating the role of cyclophosphamide 
from other agents, or both factors.

The most substantial evidence available to 
previous Working Groups was a Danish study 
of 602 patients treated “mainly with cyclophos-
phamide” for non-Hodgkin lymphoma, in which 
nine cases of acute myeloid leukaemia were 
observed compared to 0.12 expected (Pedersen-
Bjergaard et al., 1985), and a case–control study 
of leukaemia following ovarian cancer in the 
former German Democratic Republic where a 
strong dose–response relationship was observed 
(Haas et al., 1987). All other studies reported at 
most three cases of leukaemia or bladder cancer 
in people who had received cyclophosphamide as 
the only potentially carcinogenic agent (IARC, 
1981; Kinlen, 1985; Greene et al., 1986).

Subsequently, further studies have been 
published that have provided more detailed infor-
mation on the carcinogenicity of cyclophospha-
mide. This review is restricted to epidemiological 
studies that have used appropriate comparison 

groups to investigate the role of cyclophospha-
mide as the cause of specific types of cancer.

There have been several reported cohort 
studies in which patients treated with cyclophos-
phamide were followed up, and the occurrence 
of second cancers investigated. Valagussa et al. 
(1994) followed 2465 women who had received 
treatment with cyclophosphamide, methotrexate 
and fluorouracil, a combination in which only 
cyclophosphamide is considered to have carcino-
genic potential in humans. There were three cases 
of acute myeloid leukaemia observed compared 
to 1.3 expected, and five cases of bladder cancer 
compared to 2.1 expected. Statistical signifi-
cance was not reported but was calculated by the 
Working Group to be greater than 0.05 for both 
types of cancer. Smith et al. (2003) followed 8563 
women who had received cyclophosphamide and 
doxorubicin as adjuvant therapy for breast cancer 
and observed 43 cases of acute myeloid leukaemia 
or myelodysplastic syndromes (AML/MDS). 
The incidence of AML/MDS overall was seven 
times higher than expected rates in the general 
population, and was increased 3-fold in regimens 
that contained double the cumulative dose of 
cyclophosphamide.

Several case–control studies have also been 
reported. For leukaemia, Kaldor et al. (1990) 
investigated 114 cases of a cohort of ovarian 
cancer patients. The relative risks were, respec-
tively, 2.2 and 4.1 in two increasing dose cate-
gories of cyclophosphamide. Neither increase 
was reported as statistically significant. Travis 
et al. (1994) carried out a study involving 35 
cases of leukaemia following non-hodgkin 
lymphoma, and found that prior treatment with 
cyclophosphamide was associated with a rela-
tive risk of 1.8 that was not statistically signifi-
cant when comparison was made to treatment 
with radiotherapy alone. In an investigation by 
Nandakumar et al. (1991) of 97 cases of myeloid 
leukaemia as second primary cancers, patients 
receiving cyclophosphamide had a relative risk 
of 12.6 compared to those treated surgically, and 
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was substantially higher when prednisone was 
co-administered with cyclophosphamide. Curtis 
et al. (1992) compared 90 women who developed 
acute myeloid leukaemia following breast cancer 
to controls, and found that the risk of leukaemia 
was 2.6 times greater in those who had received 
cyclophosphamide, compared to women who 
had been treated by surgery only. 

There have also been two case–control 
studies of bladder cancer in relation to cyclo-
phosphamide. Kaldor et al. (1995) investigated 
63 cases of bladder cancer following ovarian 
cancer, and found that in comparison to surgery 
alone, the relative risk associated with chemo-
therapy containing cyclophosphamide as the 
only potential bladder-cancer-causing agent was 
4.2 (P  =  0.025) in the absence of radiotherapy, 
and 3.2 (P  =  0.08) with radiotherapy. Travis et 
al. (1995) studied 31 cases of bladder cancer and 
17 cases of kidney cancer as well as matched 
controls within a cohort of 2-year survivors of 
non-Hodgkin lymphoma. The relative risk asso-
ciated with cyclophosphamide treatment was 4.5 
(P < 0.05) for bladder cancer, and 1.3 for kidney 
cancer.

2.1 Synthesis

The studies summarized above provide a 
comprehensive epidemiological basis for iden-
tifying cyclosphosphamide as an independent 
cause of acute myeloid leukaemia and bladder 
cancer, that fully supports the conclusions drawn 
from earlier case reports, and more limited 
studies. Several studies have assessed the risk of 
all second primary cancers following cyclophos-
phamide treatment, and some have found rates 
of occurrence that appear to be elevated, but have 
not provided evidence for risk of other specific 
cancer types.

3. Cancer in Experimental Animals

Cyclophosphamide has been tested for 
carcinogenicity by oral administration to mice 
and rats, by subcutaneous injection to mice, by 
topical application to mice, by intravenous injec-
tion to rats, by intraperitoneal injection to mice 
and rats, and by perinatal exposure to mice.

Oral administration of cyclophosphamide 
resulted in skin tumours in transgenic mice 
(Yamamoto et al., 1996; Eastin et al., 2001), and 
in urinary bladder carcinoma, leukaemia, and 
nervous system tumours in rats (Schmähl & Habs, 
1979; Habs & Schmähl, 1983). Subcutaneous 
injection of cyclophosphamide to mice caused a 
variety of neoplasms, including mammary gland 
carcinoma and leukaemia (Schmähl & Osswald, 
1970; Walker & Bole, 1971, 1973; Walker & Anver, 
1979, 1983; Petru et al., 1989).

Intravenous injection of cyclophospha-
mide to rats caused both benign and malignant 
neoplasms (Schmähl, 1967, 1974; Schmähl & 
Osswald, 1970).

Intraperitoneal administration of cyclo-
phosphamide increased the incidences of lung 
adenoma and adenocarcinoma, bladder papil-
loma, and leukaemia in mice (Shimkin et al., 
1966; Weisburger et al., 1975; Mahgoub et al., 
1999), and mammary gland adenoma and carci-
noma in rats (Weisburger et al., 1975).

Administration of cyclophosphamide to 
newborn mice caused lung and liver adenoma 
and carcinoma, and Harderian gland adenoma 
(Kelly et al., 1974; McClain et al., 2001).

See Table 3.1.

67



IA
RC M

O
N

O
G

RA
PH

S – 100A

68

Table 3.1 Studies of cancer in experimental animals exposed to cyclophosphamide

Route 
Species, strain (sex), 
age 
Duration 
Reference

Dosing regimen 
Animals/group at start

  Incidence of tumours   Significance   Comments

Oral administration
Mouse, Tg ras H2/CB6F1 & 
B6C6F1 (M), 9 wk 
26 wk 
Yamamoto et al. (1996)

0, 10, 30 mg/kg bw by gavage (in 
water, volume NR), twice/wk for 
25 wk 
Initial number/group NR

Tg ras H2/CB6F1: 
Lung (adenomas)– 
0/9, 3/16, 3/27  
Multiplicity– 
0, 0.19, 0.11 tumours/mouse

[NS]a   Pharmaceutical grade

CB6F1: 
Lung (adenomas)– 
0/6, 2/18, 2/20 
Multiplicity– 
0, 0.11, 0.10 tumours/mouse

[NS]a

Mouse, Tg.AC (M, F), 
8–9 wk 
27 wk 
Eastin et al. (2001)

0, 10, 30, 60 mg/kg bw by gavage 
(in water 50% ethanol, volume 
NR); twice/wk for 26 wk 
15/sex/group

Skin tumours (at all sites; 
histologically confirmed): 
5/15, 1/2, 5/5, 5/15 (M); 2/15, 5/11, 
11/11, 14/15 (F)

[P < 0.0001 for 30 and 
60 mg/kg bw doses in 
female mice]a

Purity NR; Tg.AC mice are 
transgenic mice that carry a 
v-Ha-ras oncogene

Skin tumours (squamous cell 
papillomas of vulva): 
2/15, 4/11, 10/11, 12/15 (F)

[P ≤ 0.0003 for 30 and 
60 mg/kg bw doses in 
female mice]a

Leukaemia (erythrocytic): 
0/15, 0/15, 4/15, 1/15 (F)

P < 0.05, for 30 mg/kg bw 
group

Rat, Sprague-Dawley (M, 
F) 
Lifetime 
Schmähl & Habs (1979)

0, 0.31, 0.63, 1.25, 2.5 mg/kg bw 
in drinking-water, 5 ×/wk for life 
40/sex/group

Malignant tumours: 
4/38, 11/34, 14/36, 15/35, 13/31 (M); 
5/34, 11/37, 13/37, 11/33, 9/27 (F)

[P < 0.05, for 3 highest 
doses]

Purity NR

Urinary bladder (carcinomas): 
0/38, 2/34, 2/36, 5/35, 7/31 (M); 0/34, 
0/37, 0/37, 0/33, 1/27 (F)

[P ≤ 0.02 for 2 highest 
doses in males]a

Lymphoid and haematopoietic tissue 
(leukaemia): 
0/72, 3/71, 6/73, 6/68, 4/58 (M, F)

[P ≤ 0.04 for 3 highest 
doses for combined males 
and females]a

Nervous system (sarcomas): 
1/72, 7/71, 5/73, 6/68, 1/58 (M, F)

[P ≤ 0.05 for 0.31 and 
1.25 mg/kg doses for 
combined males and 
females]a
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Table 3.1 (continued)
Route 
Species, strain (sex), 
age 
Duration 
Reference

Dosing regimen 
Animals/group at start

  Incidence of tumours   Significance   Comments

Rat, Sprague-Dawley (M), 
100 d 
20 mo 
Habs & Schmähl (1983)

0, 2.5 mg/kg bw in drinking-
water, 5 ×/wk for 20 mo 
100/group

Urinary bladder (papillomas or 
transitional-cell carcinomas): 
0/63, 24/80

[P < 0.0001]a Reported as “chemically 
pure”

Nervous system tumours: 
1/63, 11/80

[P < 0.0076]a

Rat, Sprague-Dawley (M), 
100a 
Lifetime 
Schmähl & Habs (1983)

0, 2.5 mg/kg bw in drinking-
water, 5 times/wk for life 
100/group

Urinary bladder (papillomas): 
0/100, 15/100

[P < 0.0001]a Purity NR; only data on 
bladder tumours reported

Urinary bladder (transitional-cell 
carcinomas): 
0/100, 17/100

[P < 0.0001]a

Subcutaneous injection
Mouse, NMRI (F) 
52 wk 
Schmähl & Osswald (1970)

0, 26 mg/kg bw/wk (in solvent 
NR), for 5 wk 
50/group

Malignant tumours (primarily 
mammary carcinomas): 
3/46, 28/46

[P < 0.001]b Purity > 98%

Mouse, New Zealand 
Black/New Zealand White 
(F) 
64 wk 
Walker & Bole (1971)

0, 8 mg/kg bw (in saline; volume 
NR), daily for 64 wk 
16, 10

Neoplasms (mainly lymphomas): 
0/16, 6/10

P = 0.00002 Purity NR

Mouse, New Zealand 
Black/New Zealand White 
(M, F) 
93 wk 
Walker & Bole (1973)

0, 1, 8 mg/kg bw (in 100 μL 
saline), daily for 93 wk 
20, 10, 10 per sex

Neoplasms (mainly lymphomas): 
2/16, 3/9, 8/9 (M); 1/20, 1/10, 9/9 (F)

P = 0.003 for 8 mg/kg 
bw males; P < 0.0001 for 
8 mg/kg bw females

Purity NR

Mouse, New Zealand 
Black/New Zealand White 
(F) 
Lifetime 
Walker & Anver (1979)

0, 5.7, 16 mg/kg bw (in 100 μL 
saline), daily for life 
15, 17, 21

Neoplasms (mainly mammary 
carcinomas): 
0/13, 15/15, 17/19

[P < 0.0001 for 5.7 and 
16 mg/kg bw groups]a

Purity NR; treatment groups 
not started simultaneously

Mammary carcinomas: 
0/13, 5/15, 16/19

[P ≤ 0.03 for 5.7 and 
16 mg/kg bw groups]a

Mouse, New Zealand 
Black/New Zealand White 
(F), 6 wk 
Lifetime 
Walker & Anver (1983)

0, 56 mg/kg bw (in 100 μL 
saline), weekly for life 
15, 22

Neoplasms: 
0/13, 17/19

[P < 0.0001]a Purity NR; groups not 
started simultaneously; 
Neoplasms were mainly 
mammary gland carcinomas, 
lung adenomas and 
lymphomas
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Route 
Species, strain (sex), 
age 
Duration 
Reference

Dosing regimen 
Animals/group at start

  Incidence of tumours   Significance   Comments

Mouse, NMRI & AKR (F), 
7 wk,  
Lifetime 
Petru et al. (1989)

0, 13, 26 mg/kg bw (in saline, 
volume NR), weekly for life 
30/group

Leukaemia (NMRI mice): 
2/30, 16/30, 10/30

P ≤ 0.027 for 13 & 26 mg/
kg bw groups

Purity NR 
[negative trend in AKR mice]

Leukaemia (AKR mice): 
30/30, 25/30, 19/30

P ≤ 0.006 for 13 & 26 mg/
kg bw groups

Skin application
Mouse, Tg.AC (M, F), 
8–9 wk 
27 wk 
Eastin et al. (2001)

0, 10, 30, 90 mg/kg bw (in 50% 
ethanol, 3.3 mL/kg bw), 2 ×/wk 
for 26 wk 
15/sex/group

Skin tumours (at site of application): 
1/15, 0/15, 2/15, 3/15 (M); 1/15, 0/15, 
0/15, 2/15 (F)

[NS]a Purity NR; Tg.AC mice are 
transgenic mice that carry a 
v-Ha-ras oncogene

Skin tumours (at all skin sites): 
1/15, 2/15, 3/15, 3/15 (M); 4/15, 3/15, 
9/15, 14/15 (F)

[P = 0.0002 for 90 mg/kg 
females]a

Intravenous administration
Rat, BR 46 (M) 
23 mo 
Schmähl (1967)

0, 15 mg/kg bw (vehicle and 
volume NR), weekly (750 mg/
kg bw total dose) 
50, 40

Neoplasms (benign and malignant 
combined): 
1/50, 14/26

[P < 0.001]b   Purity > 98%

Rat, BR 46 (M) 
23 mo 
Schmähl & Osswald (1970)

0, 13 mg/kg bw (vehicle and 
volume NR), weekly for 52 wk 
89, 48

Neoplasms: 
3/65, 4/36 (benign); 4/65, 6/36 
(malignant)

[NS]b   Purity > 98%

Rat, BR 46 (M) 
23 mo 
Schmähl & Osswald (1970)

0, 33 mg/kg bw (vehicle and 
volume NR), 5 times every 2 wk 
89, 96

Neoplasms: 
3/65, 5/66 (benign); 4/65, 16/66 
(malignant)

[P < 0.01, malignant 
tumours]b

  Purity > 98%

Rat, Sprague-Dawley (M) 
700 d 
Schmähl, (1974)

0, 13 mg/kg bw (vehicle and 
volume NR), weekly (670 mg/
kg bw total dose) 
52, 32

Neoplasms (malignant): 
6/52, 14/32

[P < 0.001]b   Purity > 98%

Intraperitoneal administration
Mouse, dd (M, F) 
48 wk 
Tokuoka (1965)

0 or 5 mg/kg bw (in saline 5 mL/
kg), 2 injections/wk for 15 wk 
20, 29

Lung (adenomas or carcinomas): 
1/20, 3/29

NS Purity NR

Liver (adenomas): 
0/20, 2/29

NS

Testis (interstitial cell tumours): 
0/20, 4/29

NS

Mammary gland (carcinomas): 
1/20, 3/29

NS

Table 3.1 (continued)
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Table 3.1 (continued)
Route 
Species, strain (sex), 
age 
Duration 
Reference

Dosing regimen 
Animals/group at start

  Incidence of tumours   Significance   Comments

Mouse, A (M, F) 
48 wk 
Tokuoka (1965)

0 or 5 mg/kg bw (in saline 
10 mL/kg), 2 injections/wk for 
15 wk 
16, 25

Lung (adenomas or carcinomas): 
2/16, 6/25

NS Purity NR

Testis (interstitial cell tumours): 
0/16, 3/25

NS

Mouse, A/J (M, F, equally 
split) 
39 wk 
Shimkin et al. (1966)

0, 32.2, 129, 516, 1609 μmol/kg 
bw (total dose; in 200 μL water), 
3 injections/wk for 4 wk 
360, 30, 30, 30, 30

Lung (adenomas or 
adenocarcinomas): 
107/339, 12/30, 11/26, 20/27, 2/4 
(incidence); 0.38, 0.4, 0.6, 1.3, 2.5 
(tumours per mouse)

[p < 0.001 (for 516 µmol/
kg bw dose, incidence)]b

Purity NR

Mouse, Swiss-Webster-
derived (M, F) 
18 mo 
Weisburger et al. (1975)

0, 12, 25 mg/kg bw (vehicle and 
volume NR), 3 injections/wk for 
6 mo 
101, 25, 25 (M) 
153, 25, 25 (F)

Lung (adenomas or 
adenocarcinomas): 
10/101, 7/30 (M); 21/153, 10/35 (F)

P = 0.031 (M) and 
P = 0.027 (F) (combined 12 
& 25 mg/kg bw vs control)

Purity NR; not all control 
mice were treated with the 
vehicle

Bladder (papillomas or carcinomas): 
3/101 & 4/30 (M)

P = 0.048 (combined 12 & 
25 mg/kg bw vs control)

Mouse, 129/Sv & 129/Sv X 
C57BL/6 Nf1+/+ & Nf1+/−(sex 
NR), 6–10 wk 
15 mo 
Mahgoub et al. (1999)

0 or 100 mg/kg bw/wk (solvent 
and volume NR) for 6 wk 
129/Sv Nf1+/+: 31 & 5 mice 
129/Sv Nf1+/−: 46 & 12 mice 
129/Sv X C57BL/6 Nf1+/+: 14 & 
15 mice 
129/Sv X C57Bl/6 Nf1+/−: 412 & 
25 mice

Leukaemia (129/Sv Nf1+/+): 
2/31, 0/5

Purity NR

Leukaemia (129/Sv Nf1+/−): 
8/46, 7/12

P = 0.004

Leukaemia (129/Sv X C57BL/6 
Nf1+/+): 
0/14, 2/25
Leukaemia (129/Sv X C57BL/6 
Nf1+/−): 
0/12, 7/25

Rat, Sprague-Dawley (M, 
F) 
18 mo 
Weisburger et al. (1975)

0, 5, 10 mg/kg bw (vehicle and 
volume NR), 3 injections/wk for 
6 mo 
179, 25, 25 (M) 
181, 25, 28 (F)

Mammary gland (adenomas): 2/105 
& 24/53 (F; combined 5 & 10 mg/
kg bw)

P = 0.028 Purity NR; not all control 
rats were treated with the 
vehicle

Mammary gland (carcinomas): 
13/105 & 9/53 (F; combined 5 & 
10 mg/kg bw)

P = 0.035
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Route 
Species, strain (sex), 
age 
Duration 
Reference

Dosing regimen 
Animals/group at start

  Incidence of tumours   Significance   Comments

Perinatal exposure
Mouse, CD-1 (M, F) 
79 wk 
Kelly et al. (1974)

i.p. injection 
0, 0.8, 4.0, 20.0 mg/kg bw (in 
10 µL/kg saline), on postnatal 
Days 1, 3, 6 
30/sex/group

Lung (adenomas): 
0/28, 2/29, 4/27, 0/21 (M); 1/25, 2/27, 
2/28, 3/21 (F)

P < 0.05 for 4 mg/kg bw 
males (life-table analysis)

Purity NR; the 20 mg/kg 
dose caused marked bw 
changes and nearly 100% 
mortality

Mouse, CD-1 (M, F) 
1 yr 
McClain et al. (2001)

Oral 
0, 10, 20, 40, 60 mg/kg bw by 
gavage (100 µL and 200 µL) on 
postnatal Days 8 & 15 [solvent 
NR] 
48 (control), 24/sex

Liver (adenomas): 
2/48, 2/24, 4/24, 6/24, 5/24 (M)

[P < 0.04 for 40 & 60 mg/
kg bw]a

Purity NR

Liver (carcinomas): 
0/48, 0/24, 1/24, 6/24, 1/24 (M)

[P = 0.0009 for 40 mg/kg 
bw]a

Lung (adenomas): 
3/48, 0/24, 8/24, 12/24, 13/24 (M); 
7/48, 3/24, 6/24, 16/24, 13/24 (F)

[P < 0.005 for 20, 40, & 
60 mg/kg bw (M); 40 & 
60 mg/kg bw (F)]a

Lung (carcinomas): 
0/48, 1/24, 0/24, 6/24, 3/24 (M); 0/48, 
1/24, 3/24, 3/24, 0/24 (F)

[P < 0.03 for 40 & 60 mg/
kg bw (M); 20 & 40 mg/kg 
bw (F)]a

Harderian gland (adenomas): 
2/48, 1/24, 1/24, 1/24, 5/24 (F)

[P < 0.04 for 60 mg/kg 
bw]a

Pre and postnatal exposure
Mouse, BR 46 (M, F) 
24 mo 
Roschlau & Justus (1971)

i.p injection 
25 mg/kg bw on gestation Day 14 
[solvent and volume NR]. Male 
and female offspring treated 
every 2 wk for a total of 30 times 
Initial number NR

Lung (adenomas): male offspring 
4/16, 2/16; female offspring 5/12 & 
1/18

NS Purity NR

Lung (carcinomas): male offspring 
0/16, 3/16; female offspring 0/12, 4/18

NS

a Current Working Group analysis (Fisher Exact test)
b Previous Working Group analysis
bw, body weight; d, day or days; F, female; i.p., intraperitoneal; M, male; mo, month or months; NR, not reported; NS, not significant; vs, versus; wk, week or weeks, yr, year or years

Table 3.1 (continued)
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4. Other Relevant Data

4.1 Absorption, distribution, 
metabolism, and excretion

In most species, cyclophosphamide is rapidly 
absorbed, metabolized, and excreted. Its meta-
bolic pathway has been studied in several species 
including mice, rats, hamsters, rabbit, dogs, 
sheep, and monkeys. Cyclophosphamide is not 
cytotoxic per se, because it requires metabolic 
activation before it can act as an alkylating agent. 
Activation takes place predominantly in the liver, 
although this may occur in other tissues (IARC, 
1981).

Cyclophosphamide undergoes metabo-
lism to several intermediates with alkylating 
activity. The principal metabolites identified 
are phosphoramide mustard, and acrolein. 
Phosphoramide mustard can undergo dephos-
phoramidation to yield nornitrogen mustard, 
which also has alkylating activity. Metabolites of 
cyclophosphamide can interact with DNA and 
proteins, resulting in the formation of adducts. 
The metabolism of cyclophosphamide and DNA 
adducts formation are summarized in Fig. 4.1.

 A minor pathway results in dechloroeth-
ylation and the formation of 2-dechloroethylcy-
clophosphamide and another alkylating agent, 
chloroacetaldehyde (Balu et al., 2002).

The other compounds such as 4-ketocyclo-
phosphamide and propionic acid derivative are 
relatively non-toxic, and are the major urinary 
metabolites of cyclophosphamide in several 
species (IARC, 1981).

4.2 Genetic and related effects

4.2.1 Interaction with DNA

Using 4-hydroperoxycyclophosphamide as 
an activated form of cyclophosphamide, Mirkes 
et al. (1992) identified by mass spectrometric 
analysis the formation of the monofunctional 

adduct N-(2-chloroethyl)-N-[2-(7-guaninyl)
ethyl]amine (nor-G) and the bifunctional adduct 
N,N-bis[2-(7-guaninyl)ethyl]amine (G-nor-G) 
in rat embryos in in-vitro culture. The mono-
functional adduct N-(2-hydroxyethyl)-N-[2-(7-
guaninyl)ethyl]amine (nor-G-OH) was detected 
in bladder tissue of rats injected with [3H]
cyclophosphamide (Benson et al., 1988). Using 
32P-postlabelling analysis, a phosphotriester 
was shown to be formed: (1) when phosphora-
mide mustard was reacted with deoxyguanosine 
5′-monophosphate, (2) when cyclophospha-
mide was incubated with calf thymus DNA in 
the presence of reconstituted cytochrome P450 
(CYP) metabolizing system, and (3) in liver DNA 
from mice injected intraperitoneally with cyclo-
phosphamide (Maccubbin et al., 1991).

Nornitrogen mustard reacts with guanosine 
and with guanine bases in DNA to form nor-G 
initially, but this is converted to a hydroxy-
lated derivative (nor-G-OH), and to a cross-
linked (between guanines) adduct (G-nor-G) 
(Hemminki, 1987). Both monofunctional adducts, 
but not the cross-linked adduct, were also detected 
when phosphoramide mustard was reacted with 
DNA (Cushnir et al., 1990). Acrolein reacts with 
DNA to form O6-(n-propanalyl)guanine, and 
the product of chloroacetaldehyde reaction with 
DNA is O6-(ethanalyl)guanine (Balu et al., 2002). 
Acrolein can produce exocyclic adducts in DNA, 
including 1,N2-hydroxypropanodeoxyguanosine 
and 1,N6-hydroxypropanodeoxyadenosine 
(Chung et al., 1984; Foiles et al., 1990; Smith 
et al., 1990). The former was detected in acrolein-
treated human fibroblasts and in peripheral 
blood lymphocytes of a dog treated with cyclo-
phosphamide (Wilson et al., 1991).

Nornitrogen mustard also reacts covalently 
with proteins, and a method for the detection 
of cysteine-34 residue adducts in human serum 
albumin has been described (Noort et al., 2002).

The single-cell gel comet assay is used to 
detect single-strand breaks and other alkali-labile 
lesions in DNA exposed to cyclophosphamide. 
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In vitro studies have demonstrated the comet-
forming activity of cyclophosphamide in human 
hepatoma (Hep G2) cells (Uhl et al., 2000; Yusuf 
et al., 2000), in primary cultures of rat and 
human urinary bladder cells (Robbiano et al., 
2002), in primary cultures of human leukocytes 
in the presence of metabolic activation system S9 
mix (Hartmann et al., 1995; Hartmann & Speit, 
1995; Frenzilli et al., 2000), and in extended-term 
cultures of human T-lymphocytes, also in the 
presence of S9 (Andersson et al., 2003). Comet 
formation was also detected in vivo in the urinary 
bladder mucosa of rats given cyclophosphamide 
orally (Robbiano et al., 2002), and in peripheral 
blood cells of patients administered the drug 
(Hartmann et al., 1995).

4.2.2 Genotoxic effects in humans

There are few reports of DNA-adduct 
formation by cyclophosphamide in humans. 
Acrolein-derived DNA adducts, detected by 
immunochemical methods, were found in 
blood leukocytes of cancer patients receiving 
cyclophosphamide (McDiarmid et al., 1991). 
In another study, mono-adducts and inter-
strand cross-links derived from phosphoramide 
mustard were detected in a single patient admin-
istered 1 g/m2 cyclophosphamide (Souliotis et al., 
2003). Increased DNA damage (comet formation) 
was also observed in the lymphocytes of patients 
administered cyclophosphamide (Hartmann 
et al., 1995).

Increased frequencies of several biomarkers of 
genotoxicity have been observed in the lympho-
cytes of patients treated with cyclophosphamide, 
relative to control subjects. These include muta-
tions at the hypoxanthine-(guanine) phospho-
ribosyl transferase (HPRT) locus (Palmer et al., 
1986, 1988; Tates et al., 1994; Sanderson et al., 
2001), and sister chromatide exchange (Raposa 
& Várkonyi, 1987; McDiarmid et al., 1990; Sardaş 
et al., 1994; Mertens et al., 1995; Hartmann et al., 
1995).

Other studies reported positive findings for 
elevated chromosomal aberrations frequencies 
(Sessink et al., 1994; Rubes et al., 1998; Burgaz 
et al., 2002), and micronuclei (Yager et al., 1988; 
Tates et al., 1994; Zúñiga et al., 1996; Burgaz 
et al., 1999; Rekhadevi et al., 2007) in medical 
personnel exposed to cyclophosphamide. 
Increases in frequencies of micronuclei were also 
detected in buccal cells in some studies (Cavallo 
et al., 2005; Rekhadevi et al., 2007), but not in 
another (Burgaz et al., 1999).

4.2.3 Genotoxic effects in experimental 
systems

(a) Mutagenic effects in vitro

The previous IARC Monograph (IARC, 
1987b) states that cyclophosphamide induced 
chromosomal aberrations, sister chromatid 
exchange, and DNA damage in human cells in 
vitro. It also induced morphological transfor-
mation, chromosomal aberrations, sister chro-
matid exchange, mutation, and unscheduled 
DNA synthesis (UDS) in rodent cells in vitro. It 
further induced aneuploidy, mutation, recom-
bination, gene conversion, and DNA damage in 
fungi. It was also reported to act as a mutagen 
and DNA-damaging agent in bacteria.

The mutagenicity of cyclophosphamide 
in Salmonella typhimurium was enhanced by 
increased induction of CYPs in S9 liver frac-
tions by a combination of β-naphthoflavone and 
sodium phenobarbital (Paolini et al., 1991a). 
Comparison of S9 from liver and kidney of preg-
nant mice revealed that liver S9 was more effective 
in activating cyclophosphamide to mutagenic 
metabolites in S. typhimurium, and also in 
inducing sister chromatid exchange in human 
peripheral lymphocytes, and Chinese hamster 
ovary (CHO) cells (Winckler et al., 1987).

In Saccharomyces cerevisiae, higher rates of 
mitotic gene conversion and point mutation by 
cyclophosphamide were associated with induc-
tion of class 2B CYPs in co-cultured epithelial cell 
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lines from fetal mouse liver (Paolini et al., 1991b). 
A recombinant plasmid containing a full-length 
cDNA encoding the rat cytochrome CYP2B1 
introduced into S. cerevisiae also increased the 
mutation frequency induced by cyclophospha-
mide (Black et al., 1989).

CYP2B1 expressed in Chinese hamster 
V79-derived SD1 cell lines also potentiated 
cyclophosphamide mutagenesis (6-thiogua-
nine resistance), whereas CYP1A1 expressed in 
V79-derived XEM2 cell lines did not (Doehmer 
et al., 1990, 1992).

Cyclophosphamide was weakly mutagenic 
(detected by induction of resistance to 6-thio-
guanine) in differentiated Reuber hepatoma 
cells H4IIEC3/G-, but markedly cytotoxic and 
clastogenic (micronucleus formation) (Roscher 
& Wiebel, 1988), and also mutagenic in a Chinese 
hamster epithelial liver cell line (6-thioguanine 
resistance) (Turchi et al., 1992), and in Chinese 
hamster lung (CHL) cells in the presence of S9, 
as measured at microsatellite loci (Kikuno et al., 
1995).

Using 4-hydroperoxycyclophosphamide and 
phosphoradiamidic mustard, the role of different 
repair enzymes in defining sensitivity was inves-
tigated by Andersson et al. (1996) in CHO cells. 
Mutations in excision repair cross-comple-
menting ERCC1 and ERCC4 genes caused hyper-
sensitivity to the cyclophosphamide analogues.

Cyclophosphamide induced sister chromatid 
exchange in mouse primary bone-marrow and 
spleen cells (Soler-Niedziela et al., 1989), and 
micronuclei in mouse lymphoma in L5178Y tk+/- 
cells (Kirsch-Volders et al., 2003), and in parental 
V79 cells (Kalweit et al., 1999) in the presence 
of rat liver S9. Of several V79 cell lines engi-
neered to express rat CYPs, increases in micro-
nuclei (Ellard et al., 1991) and sister chromatid 
exchange (Kulka et al., 1993) were seen in the 
cells expressing CYP2B1. The rat hepatoma cells 
lines H4IIEC3/G- and 2sFou were also suscep-
tible to micronuclei induction by cyclophospha-
mide (Tafazoli et al., 1995).

Human T-lymphocytes were more susceptible 
than B-lymphocytes to both chromosomal aber-
rations and sister chromatid exchange induction 
by cyclophosphamide in the presence of rat liver 
S9 (Miller 1991a, b). This difference between T- 
and B-lymphocytes was not found with mouse 
cells treated with 4-hydroxycyclophosphamide 
or phosphoramide mustard (Kwanyuen et al., 
1990). In another study (Kugler et al., 1987), rat 
liver microsomal mix was more effective than 
rat liver S9 in activating cyclophosphamide 
to induce chromosomal aberrations. Human 
lymphocytes from women carrying mutations 
in the breast cancer susceptibility gene BRCA1 
were more susceptible to micronuclei induction 
than cells from non-carriers (Trenz et al., 2003). 
Hep G2 human hepatoma cells were susceptible 
to sister chromatid exchange and micronuclei 
induction by cyclophosphamide (Natarajan & 
Darroudi, 1991) and, in analogous studies, the 
S9 microsomal fraction of these cells were shown 
to be capable in activating cyclophosphamide to 
induce sister chromatid exchange and micronu-
clei in CHO cells (Darroudi & Natarajan, 1993). 
Human dental pulp cells formed chromosomal 
aberrations when exposed to cyclophosphamide 
in the presence of rat liver S9 (Tsutsui et al., 2006).

In the presence of rat liver S9, cyclophospha-
mide induced morphological transformation 
of BALB/3T3 mouse embryonic fibroblast cells 
(McCarvill et al., 1990).

(b) Mutagenic effects in vivo

The previous IARC Monograph (IARC, 1987b) 
states that cyclophosphamide was found to bind 
to kidney, liver and lung DNA in mice. It also 
induced dominant lethality, chromosomal aber-
rations, micronuclei, sister chromatid exchange, 
mutations, and DNA damage in rodents in vivo. 
In Drosophila, it induced aneuploidy, herit-
able translocations, and somatic and sex-linked 
recessive lethal mutations. In patients adminis-
tered cyclophosphamide, increased incidences of 
chromosomal aberrations and sister chromatid 
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exchange in peripheral lymphocytes and bone 
marrow were observed.

In Drosophila melanogaster, cyclophospha-
mide tested positive for the somatic white-ivory 
mutation (Batiste-Alentorn et al., 1994), and 
produced chromosome breaks in spermatocytes 
(Zijlstra & Vogel, 1989).

Several studies have examined the muta-
genic effects of cyclophosphamide in transgenic 
mice. In MutaMouse, mutation induction was 
observed in bone marrow (other tissues not 
studied) (Hoorn et al., 1993). In Big Blue mice, 
mutation frequencies were elevated in the liver, 
but not in the testis or spleen in one study (Hoyes 
et al., 1998), and in another study, in the lung 
and urinary bladder, but not in the kidney, bone-
marrow or splenic T-cells (Gorelick et al., 1999). 
Another study compared the lacI locus in Big 
Blue mice with the Hprt locus in conventional 
B6C3F1 mice, and cyclophosphamide induced 
mutations in the endogenous gene in splenic 
lymphocytes, but not in the transgene (Walker 
et al., 1999). In rats, cyclophosphamide produced 
the ‘common deletion’ mutation in liver mito-
chondrial DNA, and folic acid supplementation 
was found to be protective against this damage 
(Branda et al., 2002).

In two related studies investigating oncogene 
and tumour-suppressor gene expression in mice, 
cyclophosphamide was found to induce expres-
sion of several genes, including c-Myc and Tp53, 
in the spleen and thymus, but not in other tissues 
(Ember et al., 1995; Ember & Kiss, 1997).

Many studies have investigated the cyto-
genicity of cyclophosphamide in newts, rodents, 
dogs, and non-human primates. Results are 
invariably positive for this compound, and are 
summarized in Table 4.1.

(c) Mutagenic effects in germ cells

Anderson et al. (1995) reviewed the activity of 
cyclophosphamide in germ cells, and in summary, 
the germ cell stages that are most sensitive to 
cyclophosphamide are the postmeiotic stages. 

Tests for germ-cell damage that examine effects 
in F1 progeny in which cyclophosphamide gave 
positive results include dominant lethality, herit-
able translocations, specific locus mutations, and 
malformations. Although cyclophosphamide 
is not an effective aneugen, it causes structural 
and numerical chromosomal damage in second 
meiotic metaphases and first cleavage meta-
phases, and in F1 embryos. It is also positive for 
inducing sister chromatid exchange in germ cells 
and causes abnormal sperm-head morphology. 
Most studies have been carried out in mice, but 
positive results have also been observed in rats 
and rabbits, e.g. induction of unscheduled DNA 
synthesis in the testes (reviewed in Anderson 
et al., 1995), and also in hamsters (Waters & 
Nolan, 1995).

More recent studies in mice have demon-
strated the dominant lethal effects of cyclospho-
sphamide (Dobrzyńska et al., 1998) as well as 
intrachromosomal gene conversion and mutation 
events primarily in meiotic stage cells (Schimenti 
et al., 1997). In female rats, administration of 
cyclophosphamide at 16 days of gestation signif-
icantly increased nucleolar and synaptonemal 
complex fragmentation (Cusidó et al., 1995), and 
in male rats chronic exposure to cyclophospha-
mide disrupted meiotic events before pachynema 
during spermatogenesis (Barton et al., 2003).

(d) Modulation of mutagenicity by other agents

A large number of studies have investigated 
the effects of agents in modulating the genotox-
icity of cyclophosphamide, and are summarized 
in Table 4.2.

4.3 Mechanisms of carcinogenesis

All of the available evidence indicates that 
cyclophosphamide exerts its carcinogenic 
activity via a genotoxic mechanism (McCarroll 
et al., 2008). The metabolite widely thought 
to be responsible for the antitumour activity 
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Table 4.1 Positive cytogenicity studies of cyclophosphamide in newts, rodents, dogs, and non-human primates

Species Cytogenetic end-
point investigated

Additional considerations Reference

Mouse SCE Bone-marrow cells. Reduction in frequency with increasing numbers of cell division Morales-Ramírez et al. 
(1990)

Mouse SCE Bone-marrow cells. A comparison of wild and laboratory mice Huang et al. (1990)
Mouse MN Bladder epithelial cells Konopacka (1994)
Mouse CA Bone-marrow cells. Effects of malnutrition and alcohol Terreros et al. (1995)
Mouse MN Peripheral blood reticulocytes and PCE in bone marrow Hatanaka et al. (1992)
Mouse MN Splenocytes Benning et al. (1992)
Mouse MN Bone-marrow PCE. Comparison of i.p. and p.o. administration Wakata et al. (1989)
Mouse MN 7 organs compared (bone marrow, forestomach, stomach, small intestine, large intestine, 

urinary bladder, lung)
Sycheva (2001)

Mouse Intrachromosomal 
recombination

Spleen cells 
Transgenic mouse model with lacZ transgenic expression depending on somatic 
interchromosomal inversion

Sykes et al. (1998)

Mouse MN PCE in adult bone-marrow cells and fetal liver cells. Male, female, pregnant female, and fetal 
mice compared

Harper et al. (1989)

Mouse MN 
SCE

Transplacental exposure; fetal liver cells Porter & Singh (1988)

Mouse MN 
CA

Bone-marrow and peripheral blood cells (CA) and peripheral blood erythrocytes (MN). 
Chronic ingestion of cyclosphosphamide; results positive for MN, negative for CA

Director et al. (1998)

Mouse MN Bone-marrow cells. In-vivo/in-vitro assay Odagiri et al. (1994)
Mouse CA 

SCE
Bone-marrow and spleen cells. In-vivo/in-vitro assay vs in-vivo assay Krishna et al. (1987)

Mouse SCE Bone-marrow and spleen cells. In-vivo/in-vitro assay vs in-vivo assay Krishna et al. (1988)
Rat CA Liver cells of neonates exposed in utero Saxena & Singh (1998)
Rat CA Bone-marrow cells. Comparison in liver cells before and after partial hepatectomy of treated 

rats
Rossi et al. (1987)

Rat CA 
SCE

Bone-marrow cells. Regenerating hepatocytes (SCE) Masuda et al. (1990)

Rat MN Peripheral blood reticulocytes and bone-marrow cells comparison Hayashi et al. (1992)
Mouse MN Bone-marrow PCE (positive), hepatocytes (negative) Parton & Garriott 

(1997)
Rat MN Bone-marrow cells and peripheral blood reticulocytes. 14 rat strains compared Hamada et al., (2001)
Rat MN Bone-marrow cells and peripheral blood reticulocytes. Effect of ageing studied Hamada et al. (2003)
Rat MN Pre-estrous vaginal cells Zúñiga-González et al. 

(2003)
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Table 4.1 (continued)
Species Cytogenetic end-

point investigated
Additional considerations Reference

Rat CA 
MN

Bone-marrow cells. Simultaneous evaluation of two end-points in the same animal Krishna et al. (1991)

Rat MN Bone-marrow, spleen, peripheral blood cells Abramsson-Zetterberg 
et al. (1999)

Rat MN Embryos, treatment during pre-implantation period Giavini et al. (1990)
Rat MN 

CA
Bone-marrow and spleen cells. In-vivo/in-vitro assay Moore et al. (1995)

Newt MN Larvae exposed to agent. Red blood cells Fernandez et al. (1989)
Mouse, 
Chinese 
hamster

CA 
SCE

Bone-marrow cells 
Comparison of different routes of administration 

Jenderny et al. (1988)

Rat, mouse MN 
SCE 
Sperm morphology

Bone-marrow cells (MN). Splenocytes (SCE). Rats more susceptible than mice Simula & Priestly (1992)

Rat, mouse, 
Chinese 
hamster

MN 
SCE

Bone-marrow cells. Species comparison 
Susceptibility ranked into the order rat > mouse > Chinese hamster

Madle et al. (1986)

Mouse, rat, 
Chinese 
hamster, 
Armenian 
hamster, 
guinea-pig

CA Bone-marrow cells. Interspecies comparison 
Susceptibility ranked into the order guinea-pig > rat > mouse > Chinese hamster > Armenian 
hamster

Nersessian et al. (1992)

Dog (beagle) MN Peripheral blood reticulocytes and bone-marrow cells comparison Harper et al. (2007)
Monkey MN Peripheral blood reticulocytes and bone-marrow cells comparison Hotchkiss et al. (2008)
Marmoset MN Peripheral blood erythrocytes Zúñiga-González et al. 

(2005)
CA, chromosomal aberrations; i.p., intraperitoneal; MN, micronuclei; PCE, polychromatic erythrocytes; p.o., per oral; SCE, sister chromatid exchange; vs, versus
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Table 4.2 Studies of modulation of cyclophosphamide genotoxicity in vivo and in vitro

Agent Experimental 
system

End-point measured Effect Reference

Retinol 
Retinoic acid

CHEL cells in vitro SCE Inhibitory Cozzi et al. (1990)

Apigenin Human lymphocytes + 
S9 in vitro

SCE 
CA

Inhibitory Siddique et al. (2008)

β-carotene 
Retinal 
α-tocopherol 
Riboflavin

Human lymphocytes + 
S9 in vitro

SCE Inhibitory Edenharder et al. (1998)

Vitamin C Human lymphocytes in 
vitro

SCE Enhancing Edenharder et al. (1998)

Vitamin K1 Human lymphocytes in 
vitro

SCE Inhibitory or enhancing 
(dependent on timing)

Edenharder et al. (1998)

Melatonin CHO cells + S9 in vitro SCE 
CA

Inhibitory De Salvia et al. (1999)

Melatonin CHO cells + S9 in vitro Comet formation (DNA 
damage)

Inhibitory Musatov et al. (1998)

O6-alkylguanine-DNA 
alkyltransferase (AGT)

CHO cells in vitro Hprt mutation Inhibitory Cai et al. (1999)

Buthionine sulfoximine V79 cells and CHO +S9 
in vitro

SCE Enhancing Köberle & Speit (1990)

Prostaglandin E2 Mouse lymphoid L1210 
leukaemia cells in vivo

SCE Enhancing Mourelatos et al. (1995)

Garlic extract Swiss albino mice in 
vivo

CA (bone-marrow cells) Inhibitory Shukla & Taneja (2002)

Indole-3-carbinol Swiss albino mice in 
vivo

CA (bone-marrow cells) Inhibitory Shukla et al. (2004)

Ascorbic acid Pregnant CBA/CaH 
mice in vivo

CA 
SCE (pre-implantation 
embryos)

Inhibitory 
(SCE no effect)

Kola et al. (1989)

Ascorbic acid Pregnant NMRI 
Kisslegg mice in vivo

CA 
SCE (pre-implantation 
embryos)

Inhibitory (SCE no effect) Vogel & Spielmann (1989)

β-glucan Male CD-1 mice in vivo CA (bone-marrow and 
spermatogonial cells)

Inhibitory Tohamy et al. (2003)
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Table 4.2 (continued)

Agent Experimental 
system

End-point measured Effect Reference

Nafenopin Male Wistar rats in vivo CA 
MN

Enhancing CA in bone marrow 
and MN in hepatocytes. 
Inhibitory on MN in bone 
marrow

Voskoboinik et al. (1997)

Prostaglandin E2 BALB/c mice inoculated 
with Ehrlich ascites 
tumour cells in vivo

SCE (Ehrlich ascites tumour 
cells)

Inhibitory Mourelatos et al. (1993)

Ginsenoside Rh2 Male C57BL/6 mice in 
vivo

MN (bone-marrow cells) 
Comet formation (DNA 
damage) (white blood cells)

Inhibitory Wang et al. (2006)

Verapamil Male BALB/c and 
C57BL/6 mice in vivo

CA (bone-marrow cells) Enhancing Nesterova et al. (1999)

Citrus extract Male BALB/c mice in 
vivo

MN (bone-marrow cells) Inhibitory Hosseinimehr & Karami (2005a)

Captopril Male NMRI mice in vivo MN (bone-marrow cells) Inhibitory Hosseinimehr & Karami (2005b)
Spirulina fusiformis Male Swiss albino mice 

in vivo
MN (bone-marrow cells) Inhibitory Premkumar et al. (2001a)

Saffron (Crocus sativus L.) Male Swiss albino mice 
in vivo

MN (bone-marrow cells) Inhibitory Premkumar et al. (2001b)

Melatonin and its derivatives Male albino mice in vivo MN (bone-marrow cells) Inhibitory Elmegeed et al. (2008)
Vitamin C Male Swiss albino mice 

in vivo
MN (bone-marrow cells) Inhibitory Ghaskadbi et al. (1992)

Malaria infection Female C57BL/6 mice MN (bone-marrow cells) Inhibitory Poça et al. (2008)
Lipoic acid Male Wistar rats in vivo MN (bone-marrow cells and 

peripheral blood cells)
Inhibitory Selvakumar et al. (2006)

Folic acid Newborn Wistar rats 
(fetal exposure) in vivo

MN (peripheral blood 
erythrocytes)

Inhibitory Gómez-Meda et al. (2004)

Taenia taeniformis infection Sprague-Dawley rats MN (peripheral blood 
erythrocytes)

Enhancing Montero et al. (2003)

O6-methylguanine-DNA 
methyltransferase

C57BL/6 wild type and 
Mgmt−/− mice

Hprt mutation (splenic 
lymphocytes)

Inhibitory (non-significant) Hansen et al. (2007)

CA, chromosomal aberrations; CHEL, Chinese hamster epithelial liver; CHO, Chinese hamster ovary; Hprt, hypoxanthine(guanine)phosphoribosyl transferase; MN, micronuclei; SCE, 
sister chromatid exchange
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of cyclophosphamide is the phosphoramide 
mustard (Povirk & Shuker, 1994). This metabo-
lite is also generally considered to be the most 
genotoxic, but the contribution of acrolein, 
which is highly toxic, to the genotoxic activity of 
cyclophosphamide is less clear.

It is well established that the treatment of 
cancer patients with cyclophosphamide results 
in inflammation of the urinary bladder (haem-
orrhagic cystitis), which is not seen with other 
alkylating agents (Forni et al., 1964; Liedberg 
et al., 1970). In rats, cyclophosphamide treatment 
resulted in cystitis as well (Crocitto et al., 1996), 
and in mice, mutagenic activity has been detected 
in urine following cyclophosphamide treatment 
(Te et al., 1997). The ultimate alkylating metabolite 
of cyclophosphamide, phosphoramide mustard, 
is metabolized but was not shown to cause cyto-
toxicity and had minimal morphological effects 
on the mouse bladder, but an intermediate in the 
formation of the acrolein metabolite, diethylcy-
clophosphamide administered by intraperitoneal 
injection, caused severe cystitis in male rats, and 
less extensive inflammation in female rats (Cox, 
1979). Acrolein administered to rats by intraperi-
toneal injections increased urothelial cell prolif-
eration (Sakata et al., 1989). Acrolein is the only 
metabolite of cyclophosphamide that is known 
to be both reactive and cytotoxic (IARC, 1995). 
Collectively, these data indicate that acrolein is 
the likely causative agent in cyclophosphamide-
induced cystitis. Cystitis is an established condi-
tion associated with the development of both 
squamous cell and urothelial bladder cancers 
(Michaud, 2007). However, intraperitoneal injec-
tions of acrolein by itself only induced bladder 
hyperplasia, not cancer (Cohen et al., 1992), and 
oral administration studies in mice and rats did 
not result in carcinogenic effects (IARC, 1995). 
Thus it is plausible that acrolein-induced cystitis 
plays a promoting role in cyclophosphamide 
bladder tumorigenesis that is initiated by other 
cyclophosphamide metabolites.

The protective effect of O6-alkylguanine-DNA 
alkyltransferase (AGT) against cyclophospha-
mide mutagenicity (Hprt mutations) (Cai et al., 
1999), and cytotoxicity (Friedman et al., 1999) in 
CHO cells implies some involvement of acrolein-
derived DNA damage. However, mice deficient 
in this protein (called O6-methylguanine-DNA 
methyl transferase [MGMT] in this study) were 
less susceptible to cyclophosphamide tumorigen-
esis, not more (Nagasubramanian et al., 2008). 
Studies of sister chromatid exchange induced in 
human lymphocytes by acrolein and phospho-
ramide mustard suggest that phosphoramide 
mustard is the more potent genotoxic agent 
(Wilmer et al., 1990). Furthermore, analysis of 
TP53 mutations in cyclophosphamide-associated 
human bladder cancers suggests that the muta-
tions detected are characteristic of DNA damage 
caused by phosphoramide mustard, rather than 
by acrolein (Khan et al., 1998).

4.4 Synthesis

Cyclophosphamide, after its bioactivation 
to alkylating metabolites, is carcinogenic via a 
genotoxic mechanism.

5. Evaluation

There is sufficient evidence in humans for 
the carcinogenicity of cyclophosphamide. 
Cyclophosphamide causes cancer of the bladder, 
and acute myeloid leukaemia.

There is sufficient evidence in experi-
mental animals for the carcinogenicity of 
cyclophosphamide.

Cyclophosphamide is carcinogenic to humans 
(Group 1).
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