6-NITROCHRYSENE

6-Nitrochrysene was evaluated by a previous IARC Working Group in 1988 (IARC, 1989). New data have since become available, and these have been taken into consideration in the present evaluation.

1. Exposure Data

1.1 Chemical and physical data

1.1.1 Nomenclature

Chem. Abstr. Serv. Reg. No.: 7496-02-8

1.1.2 Structural and molecular formulae, and relative molecular mass

![Chemical structure of 6-nitrochrysene](image)

C$_{18}$H$_{11}$NO$_2$

Relative molecular mass: 273.3

1.1.3 Chemical and physical properties of the pure substance

Description: Chrome-red, thick prismatic crystals (Prager & Jacobson, 1922); orange-yellow needles (Boit, 1965); light-yellow needles (Chemsyn Science Laboratories, 1988)

Boiling-point: Sublimes without decomposition (Prager & Jacobson, 1922)

Melting-point: 209 °C (Boit, 1965); 211.5–212.5 °C (Chemsyn Science Laboratories, 1988)

Spectroscopy data: Mass spectral data have been reported (Schuetzle & Jensen, 1985).

Solubility: Insoluble in many organic solvents; slightly soluble in cold ethanol, diethyl ether and carbon disulfide; somewhat more soluble in benzene, toluene and acetic acid; soluble in hot nitrobenzene (Prager & Jacobson, 1922; Chemsyn Science Laboratories, 1988).

Reactivity: Forms 6-aminochrysene on heating with tin and concentrated hydrochloric acid in acetic acid at 100 °C; reacts with bromine to form 12-bromo-6-nitrochrysene; reacts with fuming nitric acid to form 6,12-dinitrochrysene (Boit, 1965).

1.1.4 Technical products and impurities

6-Nitrochrysene (99% pure) is sold in small quantities for analytical purposes by one company each in Germany, China and the USA (Chemrexper, 2012; Chemical Buyers, 2012). It is also available as a reference material with a certified purity of 98.91% (Belliardo et al., 1988).
1.2 Analysis

For the analytical methods of nitro-polycyclic aromatic hydrocarbons (PAHs) in general, the reader is referred to Section 1.2.2(a) of the Monograph on Diesel and Gasoline Engine Exhausts in this Volume.

6-Nitrochrysene has been detected in particles that were collected on glass and quartz fibre or Teflon-coated silica fibre membrane filters (Tokiwa et al., 1990; Schauer et al., 2004). It can be extracted from particulate matter using dichloromethane for extraction by sonification (Tokiwa et al., 1990). To analyse 6-nitrochrysene, gas chromatography-negative ion chemical ionization-mass spectrometry was used, following pressurized-fluid extraction (Bamford et al., 2003; Albinet et al., 2006). This substance was also analysed after reduction to 6-aminochrysene with titanium(III) citrate and subsequent detection by fluorescence spectrometry (Zielinska & Samy, 2006), or, alternatively, by chemiluminescence detection to increase the sensitivity for 6-aminochrysene in airborne particulates (Murahashi & Hayakawa, 1997).

1.3 Production and use

1.3.1 Production

6-Nitrochrysene was first synthesized in 1890 by heating chrysene with aqueous nitric acid in acetic acid at 100 °C (Prager & Jacobson, 1922). It can also be synthesized by briefly heating chrysene with nitric acid and concentrated sulfuric acid in acetic acid at 40 °C (Boit, 1965).

1.3.2 Use

No evidence was found that 6-nitrochrysene has been used in commercial applications.

1.4 Occurrence and exposure

1.4.1 Diesel and gasoline exhaust emissions

Different types of in-use passenger cars were tested on a dynamometer using the California Unified Driving Cycle with commercial fuel and used crankcase oil ‘as received’ (Zielinska et al., 2004). The model year and testing conditions strongly influenced emission levels (Table 1.1). The 6-nitrochrysene emissions were one order of magnitude higher in cold diesel-powered cars.

Table 1.1 Levels of 6-nitrochrysene in gasoline and diesel engine emissions

<table>
<thead>
<tr>
<th>Engine</th>
<th>Year of manufacture</th>
<th>Carburant</th>
<th>T° (°C)</th>
<th>No.</th>
<th>Emission (µg/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda Millenia, Ford Explorer, Nissan Maxima, GMC 1500 Pickup, Mercury Sable</td>
<td>1982–96</td>
<td>Normal gasoline</td>
<td>22</td>
<td>18</td>
<td>0.11</td>
</tr>
<tr>
<td>Ford F-150 pick-up</td>
<td>1976</td>
<td>Gasoline black smoker</td>
<td>22</td>
<td>5</td>
<td>0.60</td>
</tr>
<tr>
<td>Mitsubishi Montero</td>
<td>1990</td>
<td>Gasoline white smoker</td>
<td>22</td>
<td>2</td>
<td>0.13</td>
</tr>
<tr>
<td>Dodge Ram 2500 Pickup, Mercedes Benz E300, Volkswagen Beetle TDI</td>
<td>1998–2000</td>
<td>Current technology diesel vehicles</td>
<td>22</td>
<td>9</td>
<td>0.24</td>
</tr>
<tr>
<td>Dodge Ram 2500 Pickup</td>
<td>1991</td>
<td>Diesel high articulate matter emitter</td>
<td>22</td>
<td>6</td>
<td>1.19</td>
</tr>
<tr>
<td>Mazda Millenia, Ford Explorer, Nissan Maxima, GMC 1500 Pickup, Mercury Sable</td>
<td>1982–96</td>
<td>Normal gasoline</td>
<td>~1</td>
<td>12</td>
<td>0.03</td>
</tr>
<tr>
<td>Dodge Ram 2500 Pickup, Mercedes Benz E300, Volkswagen Beetle TDI</td>
<td>1998–2000</td>
<td>Current technology diesel vehicles</td>
<td>~1</td>
<td>6</td>
<td>2.08</td>
</tr>
</tbody>
</table>

* Temperature of the engine when tested, calculated from Fahrenheit by the Working Group
* Number of test cycles
* Calculated from µg/mile by the Working Group

From Zielinska et al. (2004)
relative to warm engines. Such a change was not observed in the gasoline-powered cars.

In three types of heavy-duty diesel engine, different fuels were tested in the heavy-duty transient Federal Test Procedure: neat biodiesel fuel (B100), a blend of 20% biodiesel with 80% normal diesel fuel by volume (B20) and neat diesel fuel (2D). Following the use of B100, only traces of 6-nitrochrysene were detected in the exhaust. When fuelled with B20 and 2D, the amounts of 6-nitrochrysene detected in the exhaust of two of the three engines (both 1997 models) were in the range of 0.6–0.9 ng/horse power (hp)–h. After the addition of an oxidation catalyst, 6-nitrochrysene was detected at 1.8 ng/hp-h in the exhaust of one of the two engines that used B100 fuel. In the exhaust from the third engine (a 1995 model), levels of 6-nitrochrysene without a catalyst were 1.9 and 11 ng/hp-h for B20 and 2D, respectively. After the addition of an oxidation catalyst, the production of 6-nitrochrysene increased to 58 and 56 ng/hp-h for B20 and 2D, respectively (Sharp et al., 2000).

1.4.2 Ambient air and dust

Garner et al. (1986) first identified 6-nitrochrysene in the nanogram per cubic metre range in airborne particulate matter (Table 1.2). More recent reports reported values in the subnanogram per cubic metre range in urban areas, and in the lower and subpicogram per cubic metre range (or lower) at rural or remote locations (Murahashi & Hayakawa, 1997; Schauer et al., 2004; Albinet et al., 2006, 2007).

1.4.3 Biomonitoring of the general population

Blood samples were analysed for the presence of haemoglobin adducts of 6-aminochrysene, a metabolite of 6-nitrochrysene (Zwirner-Baier & Neumann, 1999). The study comprised groups of garage workers, inhabitants of Southampton and inhabitants of small villages in the region (for details, see Scheepers et al., 1999). The proportion of blood samples that contained haemoglobin adducts of 6-aminochrysene was 2/29, 3/20 and 0/20 in the three groups, respectively. Adduct
levels were all below 0.27 pmol/g haemoglobin, with a median of 0.03 pmol/g haemoglobin in all three groups. The method of analysis was based on gas chromatography-negative ion chemical ionization-mass spectrometry (see Section 1.2 of the Monograph on Diesel and Gasoline Engine Exhaust in this Volume).

2. Cancer in Humans

No data were available to the Working Group.

3. Cancer in Experimental Animals

No lifetime bioassays on the carcinogenesis of 6-nitrochrysene have been carried out, but a few selected studies have shown tumour formation in rodents.

3.1 Mouse

See Table 3.1

3.1.1 Intraperitoneal administration

Groups of 21–29 male and female newborn Swiss-Webster BLU-Ha mice were administered intraperitoneal injections of 0 (control), 38 or 189 µg/mouse of 6-nitrochrysene in dimethyl sulfoxide (DMSO) on days 1, 8 and 15 after birth. Mice were necropsied at 26 weeks of age and were analysed histologically. A 100% incidence of tumours was observed in the lung for all groups treated with 6-nitrochrysene compared with 3 out of 22 (14%) and 1 out of 15 (7%) male and female controls. The increased number of tumours (compared with controls) was highly significant ($P < 0.001$) (Busby et al., 1985).

Groups of 45 or 33 male and 34 or 40 female newborn CD-1 mice received intraperitoneal injections of 0 (control) or 2800 (total dose) nmol of 6-nitrochrysene in DMSO on days 1, 8 and 15 after birth. A further group of 33 males and 40 females received a single injection of 700 nmol of 6-nitrochrysene 10 weeks after birth. Mice were observed for up to 1 year, and those that were moribund and died in the interim were evaluated histologically. In the single 700 nmol-dose group, 25 out of 33 males (76%; one adenoma, 24 carcinomas; $P < 0.05$) and 9 out of 40 females (23%; five adenomas, four carcinomas; $P < 0.005$) developed liver tumours. The 2800-nmol dose produced liver tumours in 3 out of 9 males (33%; carcinomas; $P < 0.05$) and 3 out of 11 females (27%; two adenomas, one carcinoma; $P < 0.05$); hepatic tumours were observed in 5 out of 45 (11%) male and 0 out of 34 female vehicle controls. In the 700-nmol group, lung tumours were observed in 28 out of 33 males (85%; 11 adenomas, 17 carcinomas; $P < 0.05$) and 36 out of 40 females (90%; 19 adenomas, 17 carcinomas; $P < 0.05$). At 2800 nmol, 7 out 9 (78%) males and 9 out of 11 (82%) females developed lung tumours, while vehicle controls had an incidence of 4 out of 45 males (9%; two adenomas, two carcinomas) and 2 out of 34 females (6%; one adenoma, one carcinoma). The incidence of malignant lymphoma was also increased in treated males (at 700 nmol: 6 out of 33, 18%; at 2800 nmol: 3 out of 9, 33%) and females (at 700 nmol: 9 out of 40, 23%; at 2800 nmol: 4 out of 11, 36%) compared with their respective controls (Wislocki et al., 1986).

Groups of 91 and 26 male and 101 and 22 female newborn Swiss-Webster BLU-Ha mice received intraperitoneal injections of 0 (control) and 7 µg/mouse 6-nitrochrysene, respectively, in DMSO on days 1, 8 and 15 days after birth, and were necropsied at 26 weeks of age, when their lungs were analysed histologically. Male mice had an incidence of 11 out of 26 (42%) lung adenomas and 8 out of 26 (31%) lung adenocarcinomas. The incidence for females was 8 out of 22 (36%) and 5 out of 22 (28%), respectively, and that in the vehicle-treated groups was 12 out of 91 (13%) and 1 out of 91 (1%) for males and 7 out of 101
Table 3.1 Studies of the carcinogenicity of 6-nitrochrysene in mice

<table>
<thead>
<tr>
<th>Strain (sex)</th>
<th>Dosing regimen,Animals/group at start</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swiss-Webster BLU:ha (ICR) (M, F) 26 wks Busby et al. (1985)</td>
<td>Intraperitoneal injection 0 (control), 38.5 or 189 µg in DMSO 1, 8 and 15 d after birth; animals killed and analysed 23 wks later Newborn; 26 M, 22 F</td>
<td>Lung (all tumours): M–3/22 (14%), 26/26 (100%), 26/26 (100%) F–1/15 (7%), 22/22 (100%), 22/22 (100%)</td>
<td>*P < 0.001</td>
<td>70% of tumours were adenocarcinomas</td>
</tr>
<tr>
<td>CD-1 (M, F) 1 yr Wislocki et al. (1986)</td>
<td>Intraperitoneal injection 0 (control) or 2800 nmol (total dose) in DMSO on 1, 8 and 15 d after birth, or 700 nmol (once) at 10 wks Newborn; Vehicle control: 45 M, 34 F; 2800 nmol: 9 M, 11 F 700 nmol: 33 M, 40 F</td>
<td>Liver (adenoma and carcinoma): M–5/45 (11%), 3/9 (33%), 25/33 (76%) F–0/34, 3/11 (27%), 9/40 (23%) Lung (adenomas and carcinomas): M–4/45 (9%), 28/33 (85%), 7/9 (78%) F–2/34 (6%), 9/11 (82%), 36/40 (90%) Malignant lymphoma: M–0/45, 3/9 (33%), 6/33 (18%) F–0/34, 4/11 (36%), 9/40 (23%)</td>
<td>*P < 0.05 for all treated groups</td>
<td>Significant mortality led study to be stopped at 1 year.</td>
</tr>
<tr>
<td>Swiss-Webster BLU:ha (ICR) (M, F) 26 wks Busby et al. (1989)</td>
<td>Intraperitoneal injection 0 (control) or 7.7 µg in DMSO 1, 8 and 15 d after birth; animals killed and analysed 23 wks later Newborn; 26 M, 22 F</td>
<td>Lung (adenoma): M–12/91 (13%), 11/26 (42%) F–7/101 (7%), 8/22 (36%) Lung (adenocarcinoma): M–1/91 (1%), 8/26 (31%) F–0/26, 5/22 (23%)</td>
<td>*P < 0.001 for total lung tumours when genders combined</td>
<td>Compared with other nitroarenes in this study, 6-nitrochrysene was the most potent at producing tumours.</td>
</tr>
<tr>
<td>Swiss-Webster BLU:ha (M, F) 30 wks El-Bayoumy et al. (1989a)</td>
<td>Intraperitoneal injection 0 (control), 100 or 700 nmol (total doses) in DMSO on 1, 8 and 15 d after birth or 100 nmol (once) on day 1 Newborn; Vehicle control: 38 M, 28 F 100 nmol: 23 M, 24 F 700 nmol: 37 M, 46 F; 100 nmol (one injection): 25 M, 21 F</td>
<td>Lung (all tumours): M–18%, 100%, 100%, 100% F–11%, 100%, 100%, 100% Liver (all tumours): M–0%, 84%, 84%, 65% F–0%, 10%, 3%, 4%</td>
<td>*P < 0.01</td>
<td>Metabolites also evaluated, and the putative metabolite 1,2-dihydro-1,2-dihydroxy-6-aminochrysene showed similar or greater tumour production, suggesting 6-nitrochrysene is metabolically activated</td>
</tr>
<tr>
<td>Strain (sex)</td>
<td>Dosing regimen, Animals/group at start</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>HSD:ICR (M, F) 30 wks</td>
<td>Intraperitoneal injection 0 (control) or 100 nmol (total dose) in DMSO on 1, 8 and 15 d after birth; animals killed and analysed 23 wks later Newborn; 38 M, 24 F</td>
<td>Lung (all tumours): M–12%, 100% F–3%, 96% Liver (all tumours): M–8%, 64% F– 0%, 0%</td>
<td>$P < 0.001$ for lung tumours, and liver tumours in males</td>
<td>Study aimed at comparing isomers; 6-nitrochrysene was the most potent and 1,2- and 3-nitrochrysene did not differ from controls.</td>
</tr>
<tr>
<td>Crj:CD-1(ICR) (M, F) 24 wks</td>
<td>Intraperitoneal injection 0 (control) or 1.4 µmol (total dose) in DMSO on 1, 8 and 15 d after birth; animals killed analysed 24 wks later Newborn; Control: 22 M, 26 F 1.4 µmol: 9 M, 11 F</td>
<td>Lung (adenoma): M–0/22, 9/9 (100%) F–0/26, 11/11 (100%)</td>
<td>$P < 0.001$</td>
<td>Study to determine potential for colon tumours observed in rats; no colon tumours observed in mice</td>
</tr>
<tr>
<td>B6C3F1 (M) 1 yr</td>
<td>Intraperitoneal injection 0 or 400 nmol in DMSO on 1, 8 and 15 d after birth (treatment (T) 1: 1/7, 2/7 and 4/7; or treatment (T) 2: 0/7, 3/7 and 4/7 of the dose); fed ad-libitum diet or calorie-restricted diet at 14 wks of age; killed and analysed at 1 yr Newborn: ~20/group</td>
<td>Liver (adenoma): Ad-libitum–2/18 (11%), 19/19 (100%)* T1, 21/21 (100%)* T2 Calorie-restricted–0/21, 4/23 (17%) T1, 0/21 T2 Liver (carcinoma): Ad-libitum–0/18, 14/19 (74%)* T1, 21/21 (100%)* T2 Calorie-restricted: 0/21, 1/23 (4%) T1, 0/21 T2 Ad libitum Lung (adenoma): Ad-libitum–1/18 (6%), 11/19 (58%)* T1, 3/21 (14%) T2 Calorie-restricted– 1/19 (5%), 0/23 T1, 0/21 T2</td>
<td>*$P < 0.01$ versus control and versus ad-libitum diet</td>
<td>Purity > 99%; diet had a significant impact on tumour formation; liver tumours more prevalent than lung tumours</td>
</tr>
<tr>
<td>Strain (sex)</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-1 (M)</td>
<td>11 mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal injection</td>
<td>Dosing regimen, Animals/group at start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (control) or 250 nmol in DMSO on 1, 8 and 15 d after birth; animals killed at 11 mo and analysed</td>
<td>Incidence of tumours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newborn; 21 or 27/group</td>
<td>Lung (adenoma): 3/27 (11%), 21/21 (100%)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung (carcinoma) 0/27, 5/21 (24%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*P < 0.01</td>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative treatment with trans 1,2 dihydro-1,2-dihydroxy-6-aminochrysene, a putative metabolite, showed similar tumour and DNA-adduct formation as 6-nitrochrysene; other metabolites were less potent.</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crl/CD-1(ICR)</td>
<td>25 wks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Bayoumy et al. (1982)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin application</td>
<td>Dosing regimen, Animals/group at start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (control) or 0.1 mg in acetone on alternate d for 20 d; 10 d later, 2.5 µg TPA 3 ×/wk for 25 wks</td>
<td>Incidence of tumours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/group</td>
<td>Skin (predominantly squamous cell papillomas): 1/20 (5%), 12/20 (60%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P < 0.01</td>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purity > 99%</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOS, day; DMSO, dimethyl sulfoxide; F, female; M, male; mo, month; TPA, 12-O-tetradecanoylphorbol-13-acetate; wk, week; yr, year
The increased number of tumours (compared with controls) in males and females combined was highly significant when analysed for total tumours (32 out of 48; \(P < 0.001 \)), but not when analysed by gender (Busby et al., 1989).

Groups of newborn Swiss-Webster BLU-Ha mice received intraperitoneal injections of 0 (control; 38 males and 28 females), 100 (total dose; 23 males and 24 females) or 700 (total dose; 37 males and 46 females) nmol/mouse of 6-nitrochrysene in DMSO on days 1, 8 and 15 days after birth, or a single injection on day 1 of 100 nmol/mouse (25 males and 21 females) of 6-nitrochrysene in DMSO. Mice were necropsied at 30 weeks of age and their liver and lungs were analysed histologically. All male mice treated with 6-nitrochrysene had a 100% incidence of lung tumours. The incidence of liver tumours was 65%, 84% and 84% in males and 4%, 3% and 10% in females treated with 100 (three doses), 700 (three doses) and 100 (single dose) nmol of 6-nitrochrysene, respectively. The incidence of lung and liver tumours in all treated males was statistically significant compared with that in vehicle controls [type of tumours unspecified]. These results confirm the effects in the lungs, and show a gender-related sensitivity. Metabolites of 6-nitrochrysene were also evaluated in the study, and the putative metabolite, 1,2-dihydro-1,2-dihydroxy-6-amino chrysene, showed carcinogenicity similar to or greater than that of 6-nitrochrysene (El-Bayoumy et al., 1989a; see also Table 3.2).

An assay was conducted in male and female newborn HSD:ICR mice to compare the potency of 6-nitrochrysene with that of isomers of nitrochrysene in the induction of tumour formation. A total dose of 100 nmol/mouse of 6-nitrochrysene in DMSO was administered by intraperitoneal injection to 38 males and 24 females on days 1, 8 and 15 after birth. A group that received DMSO alone served as a vehicle control. Animals were killed and analysed histologically for lung and liver tumours 30 weeks after the last dose. The lung tumour incidence was 100% in males and 96% in females, and was statistically significantly increased compared with that in controls (12% and 3%, respectively; \(P < 0.001 \)). Liver tumours were observed in 64% (\(P < 0.001 \)) of the treated males, none of the treated females, 8% of the control males and none of the control females. The types of tumour were not specified. 6-Nitrochrysene was significantly more potent than the isomers of nitrochrysene, which did not show a significant induction of tumours (El-Bayoumy et al., 1992).

Groups of 22 or 9 male and 26 or 11 female newborn ICR mice received intraperitoneal injections of 0 (control) or 1.4 \(\mu \)mol/mouse (total dose) of 6-nitrochrysene in DMSO on days 1, 8 and 15 days after birth, were killed 24 weeks after the last dose and were analysed histologically. The incidence of lung tumours (adenoma) was 9 out of 9 (100%) treated males and 11 out of 11 (100%) treated females lung tumours versus none in the vehicle controls. No tumours were observed in the colon or the liver (Imaida et al., 1992).

The effects of diet and modality of treatment on the formation of liver and lung tumours were investigated in groups of ~20 male newborn B6C3F1 mice that received intraperitoneal injections of a total dose of 0 (control) or 400 nmol/mouse of 6-nitrochrysene (purity, > 99%) in DMSO on days 1, 8 and 15 after birth; the three injections of 6-nitrochrysene contained 1/7th, 2/7th and 4/7th (treatment 1) or 0/7th, 3/7th and 4/7th (treatment 2) of the total dose, respectively. The two treatment groups were then separated at 14 weeks of age and either received the standard diet \textit{ad libitum} or received a 70% calorie-restricted diet. The incidence of liver tumours in animals that received the standard diet \textit{ad libitum} was 19 out of 19 (100%; adenomas) 14 out of 19 (74%; carcinomas) in treatment 1 group and 21 out of 21 (100%; adenomas) and 21 out of 21 (100%; carcinomas) in treatment 2 group. The calorie-restricted diet decreased the tumour
incidence to 4 out of 23 (17%; adenomas) and 1 out of 23 (4%; carcinomas) in treatment 1 mice, but did not decrease that in treatment 2 group. The ad-libitum diet had a statistically significant effect \((P < 0.01)\) on tumour incidence in comparison with both controls and the calorie-restricted diet. The incidence of lung tumour was 11 out of 19 (58%; adenomas) in the treatment 1 group and 3 out of 21 (14%; adenomas) in the treatment 2 group fed the ad-libitum diet, whereas no lung tumours were observed in mice fed the calorie-restricted diet (Fu et al., 1994).

In a study to compare the relative DNA adducts, mutagenicity and tumour formation induced by 6-nitrochrysene and several of its major metabolites in the lungs, groups of 21–27 newborn male CD-1 mice were administered intraperitoneal injections of a total dose of 0 (control) or 250 nmol/mouse of 6-nitrochrysene on days 1, 8 and 15 after birth (1/7th, 2/7th and 4/7th of the total dose, respectively). In parallel, several metabolites of 6-nitrochrysene were evaluated at under similar experimental conditions. Tumour formation was investigated 11 months after the last dose of 6-nitrochrysene. A statistically significant increase in the incidence of lung adenoma (21 out of 21; 100%) and adenocarcinoma (5 out of 21; 24%) was observed in the 6-nitrochrysene-treated animals compared with controls (adenomas only; 3 out of 27; 11%) (Li et al., 1994).

Table 3.2 Induction of lung and liver tumours in newborn mice treated with 6-nitrochrysene and its metabolites

<table>
<thead>
<tr>
<th>Group</th>
<th>Compound</th>
<th>Total dose (nmol)</th>
<th>Mice with lung tumours (%)</th>
<th>No. of lung tumours per mouse</th>
<th>Mice with liver tumours (%)</th>
<th>No. of liver tumours per mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMSO –</td>
<td>–</td>
<td>M – 18.4 F – 10.7</td>
<td>M – 0.2 ± 0.5 F – 0.1 ± 0.3</td>
<td>M – 0 F – 0</td>
<td>M – 0 F – 0</td>
</tr>
<tr>
<td>2</td>
<td>6-NC 700</td>
<td>M – 100 a F – 100 a</td>
<td>M – 50.6 ± 29.6 a b F – 47.8 ± 26.3 a b</td>
<td>M – 84 a F – 3</td>
<td>M – 15.4 ± 15.1 a b F – 0.1 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6-NC 100</td>
<td>M – 100 a F – 100 a</td>
<td>M – 11.4 ± 6.9 a F – 13.2 ± 9.2 a</td>
<td>M – 65 a F – 4</td>
<td>M – 5.4 ± 8.6 a F – 0.1 ± 0.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2-DHD-6-NC 100</td>
<td>M – 100 a F – 100 a</td>
<td>M – 14.1 ± 9.9 a F – 15.8 ± 12.3 a</td>
<td>M – 81 a F – 10.0</td>
<td>M – 17.6 ± 18.9 a b c F – 0.1 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,2-DHD-6-AC 100</td>
<td>M – 89 a F – 89 a</td>
<td>M – 12.2 ± 12.1 a F – 13.4 ± 11.8 a</td>
<td>M – 83 a F – 5</td>
<td>M – 7.7 ± 7.5 a b c F – 0.3 ± 1.2</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) Significantly different from group 1, \(P < 0.01\)

\(b\) Significantly different from group 3, \(P < 0.01\)

\(c\) Significantly different from group 6, \(P < 0.05\)

1,2-DHD-6-AC, 1,2-dihydroxy-6-aminochrysene; 1,2-DHD-6-NC, 1,2-dihydroxy-6-nitrochrysene; 6-NC, 6-nitrochrysene; DMSO, dimethyl sulfoxide; F, female; M, male

From El-Bayoumy et al. (1989a)

3.1.2 Initiation–promotion

Groups of 20 female CD-1 mice, aged 50–55 days, received 10 topical applications of 0 (control) or 0.1 mg/mouse of 6-nitrochrysene (purity, > 99%) in 0.1 mL acetone onto the shaved back every other day for 20 days (total dose, 1 mg/mouse). Ten days later, 2.5 µg of the tumour promoter 12-O-tetradecanoylphorbol 13-acetate were applied three times a week for an additional 25 weeks, after which the animals were killed and analysed histologically. An increase in the incidence of squamous cell papilloma was observed in the treated group; 12 out of 20 (60%) treated mice developed skin tumours (primarily papillomas; \(P < 0.01\)) compared with 1 out of 20 (5%) controls. No systemic tumours were observed (El-Bayoumy et al., 1982).
3.2 Rat

See Table 3.3

3.2.1 Oral administration

In a study to evaluate the formation of mammary tumours that had previously been demonstrated in female CD1 rats and to compare the effects of several metabolites of 6-nitrochrysene that had also been reported to cause tumours, groups of 20 female Sprague-Dawley rats, aged 30 days, received intragastric intubations of 0 (control), 100 (low dose), 200 (mid-dose) or 400 (high dose) µmol/rat of 6-nitrochrysene [purity unspecified] in trioctanoin once a week for 8 weeks, and were killed 23 weeks after the last dose, when mammary tissue were analysed histopathologically. An increase in the incidence of mammary adenocarcinomas was observed: 3 out of 30 (10%) vehicle-control, 25 out of 30 (83%) low-dose (P < 0.0001), 25 out of 30 (83%) mid-dose (P < 0.0001) and 27 out of 30 (90%) high-dose (P < 0.0001) animals. A statistically significant increase in the incidence of fibroadenomas occurred in the low-dose group (5 out of 30 (17%) versus 0 out of 30; P = 0.02) (El-Bayoumy et al., 2002).

Groups of transgenic (BBR × CD)F1 rats (developed by mating Big Blue (BBR) and Sprague-Dawley (CD) strains), aged 30 days, received intragastric intubations of 0 (control), 100 or 200 µmol (total doses) of 6-nitrochrysene in trioctanoin once a week for 8 weeks. The rats were killed 32 weeks after the last dose, and mammary tissue were analysed histologically. An increase in the incidence of mammary adenocarcinomas was observed: 3 out of 30 (10%) vehicle-control, 25 out of 30 (83%) low-dose (P < 0.0001), 25 out of 30 (83%) mid-dose (P < 0.0001) and 27 out of 30 (90%) high-dose (P < 0.0001) animals. A statistically significant increase in the incidence of fibroadenomas occurred in the low-dose group (5 out of 30 (17%) versus 0 out of 30; P = 0.02) (El-Bayoumy et al., 2002).

3.2.2 Intraperitoneal administration

Groups of 31 male and 32 female newborn Crj:CG rats received intraperitoneal injection of 0 (control) or 14.8 µmol/rat (total dose) of 6-nitrochrysene in DMSO on days 1, 8 and 15 after birth. The animals were killed 32 weeks after the last administration and analysed histologically. The incidence of colon adenomas/dysplasias and adenocarcinomas was 23% and 16% in males (P < 0.01) and 44% and 6% in females (P < 0.01 for adenomas/dysplasias only), respectively. No colon tumours were observed in the controls, and no lung or liver tumours were observed in the treated or control rats (Imaida et al., 1992).

3.2.3 Intramammary administration

Groups of 30 female CD1 rats, aged 30 days, received intramammary injection of 0 (control) or 12.3 µmol/rat (total dose) of 6-nitrochrysene in DMSO over 2 days. Animals were killed and analysed grossly and histologically for tumours 43 weeks after the last injection. Fibroadenomas, but no other tumours, developed in 5 out of 30 (16%) vehicle controls. The incidence of tumours in the 6-nitrochrysene group was 24 out of 30 (80%; P < 0.0001) fibroadenomas, 15 out of 30 (50%; P < 0.0001) adenocarcinomas and 10 out of 30 (33%; P < 0.001) spindle cell carcinomas (El-Bayoumy et al., 1993).
<table>
<thead>
<tr>
<th>Strain (sex)</th>
<th>Duration</th>
<th>Reference</th>
<th>Dosing regimen, Animals/group at start</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (F) 23 wks</td>
<td>Oral administration</td>
<td>El-Bayoumy et al. (2002)</td>
<td>0 (control), 100, 200 or 400 µmol in trioctanoin once/wk for 8 wks; animals killed and analysed 23 wks later</td>
<td>Mammary (adenoma): 0/30, 0/30, 3/30 (10%), 1/30 (3%)</td>
<td>*P < 0.0001 **P = 0.02</td>
<td>High doses; not exposed by expected route in the environment; also evaluated tumour-forming potential of putative metabolites, and found that several metabolites also cause mammary tumours, none as potent as 6-nitrochrysene</td>
</tr>
<tr>
<td>Transgenic (Big Blue F344 × Sprague-Dawley) (F) 32 wks</td>
<td>Oral administration</td>
<td>Boyiri et al. 2004</td>
<td>0 (control), 100 µmol or 200 µmol (total dose) in trioctanoin once/wk for 8 wk Aged 30 d; 33 (0), 31 (100 µmol) and 14 (400 µmol)</td>
<td>Mammary (fibroadenoma): 0/33, 9/31 (29%), 2/14 (14%) Mammary (adenoma): 0/33, 1/31 (3%), 5/14 (7%) Mammary (fibroma): 0/33, 1/31 (3%), 0/14 Mammary (adenocarcinoma): 1/33 (3%), 5/31 (16%), 5/14 (36%)*</td>
<td>*P < 0.05 **P < 0.01</td>
<td>Oral administration induced mammy tumours but intraperitoneal administration in other studies produced colon tumours</td>
</tr>
<tr>
<td>Crlj:CD (M, F) 32 wks</td>
<td>Intraperitoneal injection</td>
<td>Imaida et al. (1992)</td>
<td>0 (control) or 14.8 µmol (total dose) in DMSO on 1, 8, 15, 22 and 29 d after birth; animals killed and analysed 32 wks later 31 M, 31 F (0); 31 M, 32 F (14.8 µmol)</td>
<td>Colon (dysplasia/adenoma): M–0/31, 7/31 (23%)* F–0/31, 14/32 (44%)* Colon (adenocarcinoma): M–0/31, 5/31 (16%) F–0/31, 2/32 (6%)</td>
<td>*P < 0.01</td>
<td>No lung or liver tumours observed</td>
</tr>
<tr>
<td>CD (F) 43 wks</td>
<td>Intramammary injection</td>
<td>El-Bayoumy et al. (1993)</td>
<td>0 (control) or 12.3 µmol/rat (total dose) in DMSO on 2 d; animals palpated every 2 wks 3 mo after treatment, and killed and analysed after 43 wks Aged 30 d; 30/group</td>
<td>Mammary (fibroadenoma): 5/30 (17%), 24/30 (80%)* Mammary (spindle cell carcinoma): 0/30, 10/30 (33%)* Mammary (adenocarcinoma): 0/30, 15/30 (50%)*</td>
<td>*P < 0.001 **P < 0.0001</td>
<td>Not exposed by expected route in the environment</td>
</tr>
</tbody>
</table>

Notes: *P < 0.05, **P < 0.01, d, day; DMSO, dimethyl sulfoxide; F, female; M, male; mo, month; wk, week
4. Mechanistic and Other Relevant Data

4.1 Absorption, distribution, metabolism, excretion

4.1.1 Humans

No data were available to the Working Group.

4.1.2 Experimental systems

(a) In-vivo studies

In CD rats treated intraperitoneally with a single dose of [3,4,9,10-3H] 6-nitrochrysene ([3H]6-nitrochrysene; 9 μmol/rat), only 1.3% of the dose was excreted in the urine and 23% in the faeces after 24 hours (Chae et al., 1996). The extent of metabolism was extremely limited; 6-nitrochrysene was the major component found in the faeces after 24 hours, accounting for 98% of the radioactivity. In the faeces, trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene (1,2-DHD-6-NC), chrysene-5,6-quinone and 6-aminochrysene were identified as 6-nitrochrysene metabolites; the major free products (unconjugated) identified in urine were 6-aminochrysene, 1,2-DHD-6-NC and trans-9,10-dihydro-9,10-dihydroxy-6-nitrochrysene (9,10-DHD-6-NC) (Chae et al., 1996). The same metabolites were detected in extracts from whole Blu:Ha (ICR) mice after intraperitoneal injection of [3H]6-nitrochrysene (Delclos et al., 1988). The role of intestinal microflora on the metabolism of 6-nitrochrysene was investigated in Balb/c mice after treatment with a single intraperitoneal injection of 0.03 μmol/5 μL/g body weight (bw) [3H]6-nitrochrysene (Delclos et al., 1990). The amount of 6-aminochrysene excreted in the faeces of germ-free mice within 48 hours after treatment was approximately 25% of that excreted in identically treated conventional mice.

(b) In-vitro studies

The metabolism of 6-nitrochrysene ([12-3H]6-nitrochrysene) was studied in primary cultures of human breast cells prepared from tissues obtained from reduction mammoplasty (Boyiri et al., 2002). 1,2-DHD-6-NC and 6-aminochrysene were identified as the major metabolites; chrysene-5,6-quinone was also detected. Similar results were found in cultured, immortalized human mammary epithelial MCF-10A cells, as well as estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-435) human breast cancer cell lines, in which trans-1,2-dihydro-1,2-dihydroxy-6-aminochrysene (1,2-DHD-6-AC) was also found (Boyiri et al., 2002).

In microsomes prepared from human liver and lung tissue and incubated with [3H]6-nitrochrysene, 1,2-DHD-6-NC, 9,10-DHD-6-NC, 6-aminochrysene and chrysene-5,6-quinone were identified as metabolites but with quantitative differences (Chae et al., 1993). The levels of the major metabolite, 1,2-DHD-6-NC, ranged from 33 to 132 pmol/mg protein/hour using numerous human hepatic microsomal samples; the corresponding levels using human pulmonary microsomes ranged from non-detectable to 33 pmol/mg protein/hour. The remaining metabolites were detected at much lower levels.

The oxidation of 1,2-DHD-6-NC was catalysed by CYP1A2 in human liver and CYP1A1
in human lung; CYP3A4 catalysed the reduction of 6-nitrochrysene to 6-aminochrysene. In human hepatoma HepG2 cells, 6-nitrochrysene induced the expression of CYP1A1 protein and mRNA levels that may be an important factor to assess the metabolism of 6-nitrochrysene in the liver (Chen et al., 2000). 6-Nitrochrysene also induced CYP1A1 mRNA in human lung carcinoma NCI-H322 cells. The induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by 6-nitrochrysene was investigated in various human-derived cell lines (Iwanari et al., 2002). The induction of all three CYP genes by 6-nitrochrysene was observed in HepG2 (hepatocellular carcinoma), MCF-7 (breast carcinoma), LS-180 (colon carcinoma), OMC-3 (ovarian carcinoma) and NEC14 (testis embryonal carcinoma) cells; a strong induction of CYP1B1 was observed in A549 (lung carcinoma) cells.

Incubation of 6-nitrochrysene with an exogenous metabolic activation system from rat liver resulted in the formation of 1,2-DHD-6-NC and 6-aminochrysene as the major metabolites (El-Bayoumy & Hecht, 1984). Similar results were obtained in incubations containing [3H]6-nitrochrysene and an exogenous metabolic activation system from the liver of 1- or 8-day-old BLU:Ha (ICR) mice; the formation of 1,2-DHD-6-NC (approximately twofold), 9,10-DHD-6-NC (~1.5-fold) and 6-aminochrysene (approximately fourfold) was greater in younger animals (Delclos et al., 1988). Further metabolism of [3H]1,2-DHD-6-NC by rat liver metabolic activation yielded 1,2-DHD-6-AC as the major product.

Mixed cultures of rat and mouse intestinal bacteria and pure cultures of anaerobic bacteria reduced 6-nitrochrysene to 6-aminochrysene. In the fungus, Cunninghamella elegans, 74% of the [3H]6-nitrochrysene added was metabolized within 6 days to form two isomeric sulfate conjugates (Pothuluri et al., 1998). These conjugates were identified as 6-nitrochrysene-1-sulfate and 6-nitrochrysene-2-sulfate.

4.2 Genetic and related effects

The genetic and related effects of 6-nitrochrysene and some of its metabolites have been reviewed (Rosenkranz & Mermelstein, 1983; Tokiwa & Ohnishi, 1986; Purohit & Basu, 2000; IPCS, 2003).

4.2.1 Humans

No data were available to the Working Group.

4.2.2 Experimental systems

(a) DNA adduct formation

See Fig. 4.1.

(i) In-vivo studies

The formation of DNA adduct by 6-nitrochrysene was predominantly measured using the 32P-postlabelling method and studied in rats. The intraperitoneal injection of CD rats with 14.8 µmol/rat of 6-nitrochrysene on days 1, 8, 15, 22 and 29 after birth resulted in the formation of DNA adducts, 24 hours after the last administration, in the colon (the target organ for carcinogenesis) as well as in the liver and lung (non-target organs for carcinogenesis) (Chae et al., 1996). Two major DNA adducts were detected (adducts 3 and 4). DNA adduct 3 was chromatographically indistinguishable from 5-(deoxyguanosin-\(N^2\)-yl)-6-aminochrysene [5-(dG-\(N^2\)-yl)-6-AC]. Adduct 4 was proposed by the authors to be derived from 1,2-DHD-6-AC-3,4-epoxide (Chae et al., 1996), but was later shown to be derived from 1,2-DHD-6-hydroxylamino-chrysene and was structurally identified as 5-(deoxyguanosin-\(N^2\)-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene [5-(dG-\(N^2\)-yl)-1,2-DHD-6-AC] (El-Bayoumy et al., 2004). N-(Deoxyguanosin-8-yl)-6-aminochrysene [N-(dG-8-yl)-6-AC; adduct 1] and N-(deoxyinosin-8-yl)-6-aminochrysene [N-(dI-8-yl)-6-AC; adduct 2] were also detected.
Fig. 4.1 Metabolism and DNA-adduct formation of 6-nitrochrysene

6-AC, 6-aminochrysene; C-5,6-Q, chrysene-5,6-quinone; 5-(dG-N2-yl)-6-AC, 5-(deoxyguanosin-N2-yl)-6-aminochrysene; 5-(dG-N2-yl)-1,2-DHD-6-AC, 5-(deoxyguanosin-N2-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene; 1,2-DHD-6-AC, 1,2-dihydroxy-1,2-dihydro-6-aminochrysene; 1,2-DHD-6-NC, 1,2-dihydroxy-1,2-dihydro-6-nitrochrysene; 1,2-DHD-6-NHOH-C, trans-1,2-dihydroxy-1,2-dihydro-6-hydroxy-6-aminochrysene; 6-NC, 6-nitrochrysene; N-(dG-8-yl)-6-AC, N-(deoxyguanosin-8-yl)-6-aminochrysene; N-(dG-8-yl)-1,2-DHD-6-AC, N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene; N-(dl-8-yl)-6-AC, N-(deoxyinosin-8-yl)-6-aminochrysene; N-(dl-8-yl)-1,2-DHD-6-AC, N-(deoxyinosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene; N-OH-6-AC, N-hydroxy-6-aminochrysene; N-(dG-8-yl)-6-AC, N-(deoxyguanosin-8-yl)-6-aminochrysene; N-(dl-8-yl)-1,2-DHD-6-AC, N-(deoxyinosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene; N-OH-6-AC, N-hydroxy-6-aminochrysene
6-Nitrochrysene

[N-(dI-8-yl)-6-AC; adduct 2] were not detectable in vivo.

The role of intestinal microflora on the formation of 6-nitrochrysene-induced DNA adducts was investigated in Balb/c mice after a single intraperitoneal injection of [3H]6-nitrochrysene (0.03 μmol/5 μL/g bw) (Delclos et al., 1990). The levels of DNA adducts were similar in conventional and germ-free mice; however, the adducts in the liver were derived from both N-hydroxy-6-aminochrysene and 1,2-DHD-6-AC, whereas only adducts derived from 1,2-DHD-6-AC were detected in the lung. These findings are in contrast to other findings in preweanling mice (Delclos et al., 1987a), in which the single major adduct detected in both the liver and the lung was derived from 1,2-DHD-6-AC.

As part of the newborn mouse lung adenoma bioassay, newborn CD-1 mice received intraperitoneal injections of total doses of 250 nmol of 6-nitrochrysene, 6-aminochrysene, N-hydroxy-6-aminochrysene or 6-nitrosochrysene or 80 nmol of 1,2-DHD-6-AC within 24 hours, and on days 8 and 15 after birth (Li et al., 1994). In the lung, 6-nitrochrysene, 6-aminochrysene and 1,2-DHD-6-AC produced predominantly a single major DNA adduct, which was subsequently identified as 5-(dG-N2-yl)-1,2-DHD-6-AC (El-Bayoumy et al., 2004). 6-Nitrosochrysene induced a single major adduct that was most probably derived from reaction at the C8 position of deoxyadenosine (Li et al., 1994).

(ii) In-vitro studies

N-Hydroxy-6-aminochrysene was reacted in vitro with DNA. The three major DNA adducts identified, N-(dG-8-yl)-6-AC, N-(dI-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC, accounted for 22%, 32% and 28%, respectively, of the total DNA adducts formed (Delclos et al., 1987b). The deoxyinosine adduct probably results from the oxidative deamination of the corresponding deoxyadenosine adduct. Anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-NC was shown to react with DNA, as well as with deoxyguanosine or deoxyadenosine, in vitro but these DNA adducts did not correspond to adducts found in 6-nitrochrysene-treated rats in vivo (Krzeminski et al., 2000). The reaction of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxyaminochrysene (1,2-DHD-6-NHOH-C) with DNA in vitro resulted in the formation of three major DNA adducts, namely 5-(dG-N2-yl)-1,2-DHD-6-AC, N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene and N-(deoxyinosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene (El-Bayoumy et al., 2004).

N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC were repaired to similar extents by nucleotide excision repair, because the N2-deoxyguanosine adduct formed by benzo[a]pyrene-diol-epoxide [i.e. (+)-trans-benzo[a]pyrene-diol-epoxide-N2-deoxyguanosine] in DNA duplexes constructs incubated with nucleotide excision repair-competent nuclear extracts from human HeLa cells (Krzeminski et al., 2011). As (+)-trans-benzo[a]pyrene-diol-epoxide-N2-deoxyguanosine is considered to be a poorer substrate for nucleotide excision repair, N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC lesions may be repaired slowly and may thus persist in mammalian tissues.

In rat hepatocytes treated with [3H]6-nitrochrysene or [3H]6-aminochrysene, a high degree of DNA binding was observed (0.2–4 adducts per 106 nucleotides); the two major DNA adducts formed were identified as N-(dG-8-yl)-6-AC and N-(dI-8-yl)-6-AC (Delclos et al., 1987a). Similarly, 6-nitrosochrysene formed one major adduct by 32P-postlabelling in primary rat hepatocytes, NCI-H322 derived human lung cells and Chinese hamster lung V79NH cells with endogenous acetyltransferase activity (Topinka et al., 1998). In human MCF-7 cells treated with [12-3H]6-nitrochrysene and [3H]1,2-DHD-6-NC, one major DNA adduct was detected which was chromatographically indistinguishable from a major DNA adduct found in the [12-3H]6-nitrochrysene-treated mammary
glands of rats and a deoxyguanosine adduct derived from the nitroreduction of $[^3H]1,2$-DHD-6-NC in the presence of xanthine oxidase (Boyiri et al., 2002).

(b) **Mutagenicity of 6-nitrochrysene**

(i) **Mutagenesis and chromosomal instability** in vivo

K-ras mutations in codon 12, 13 or 61 were found in 64 (88%) of 73 lung adenomas and all 15 adenocarcinomas analysed from newborn CD-1 mice treated intraperitoneally with 6-nitrochrysene (Li et al., 1994). All of the mutations in codon 12 and 13 involved a G:C base pair. Liver tumours were induced by the intraperitoneal administration of 6-nitrochrysene to preweanling B6C3F1 (total dose, 300 nmol/mouse) and CD-1 (total dose 250 nmol/mouse) mice and analysed for ras gene mutations (Manjanatha et al., 1996). The frequency of H- and K-ras mutations in 6-nitrochrysene-induced tumours was only 4% in B6C3F1 mice, while 19 liver tumours (90%) from CD-1 mice had the identical CAA to AAA mutation in H-ras codon 61. Transgenic mice have been used as powerful toxicological models to study the role of specific genetic alterations as predisposing factors for chemical carcinogenesis. In a previous study, transgenic mice carrying a prototype human c-Ha-ras gene was susceptible to lung carcinogens such as 6-nitrochrysene; the authors stated that this susceptibility may be due to somatic mutations in the ras transgene (Ogawa et al., 1996).

The mutagenicity of 6-nitrochrysene in the mammary glands was examined in the cII gene of transgenic (Big Blue F344 × Sprague-Dawley) F1 rats treated once a week for 8 weeks with 100 or 200 μmol/rat 6-nitrochrysene (Boyiri et al., 2004). The mutant frequency measured 32 weeks after the last administration was comparable in normal, non-involved and tumour tissue from the mammary glands of 6-nitrochrysene-treated rats but was significantly higher than that observed in control rats. 6-Nitrochrysene induced G:C to T:A, G:C to C:G, A:T to G:C and A:T to T:A mutations, whereas G:C to A:T transitions were primarily found in control rats.

Injection of Balb/c mice with 0–500 mg/kg bw 6-nitrochrysene led to a significant increase in micronuclei in the bone marrow (Sakitani & Suzuki, 1986).

(ii) **Mutagenesis and DNA damage in bacteria**

Since the previous review of 6-nitrochrysene (IARC, 1989), additional studies have shown that 6-nitrochrysene was mutagenic to *Salmonella typhimurium* TA98, TA100 and TA1538 in the presence of absence of an exogenous metabolic activation system (El-Bayoumy et al., 1989b; Jung et al., 1991; Chen et al., 2000). The mutagenicity of 6-nitrochrysene, 1,2-DHD-6-NC and 6-aminochrysene was compared in *S. typhimurium* TA100 and 1,2-DHD-6-NC was identified as the major proximate mutagen of 6-nitrochrysene. Bay region methyl substitution has been shown to either inhibit (5-position) or enhance (11-position) the mutagenic activity of 6-nitrochrysene in *S. typhimurium* (El-Bayoumy et al., 1989b).

6-Nitrochrysene induced DNA damage in *S. typhimurium* (SOS umu test) (Shimada et al., 1989; Rafii et al., 1994; Shimada et al., 1996; Yamazaki et al., 2000); human CYP1B1 was required to activate 6-nitrochrysene in this assay, whereas human CYP1A1 and CYP1A2 did not activate the compound (Shimada et al., 1996).

6-Nitrochrysene inhibited the growth of DNA repair-deficient *Bacillus subtilis* (Tokiwa et al., 1987).

(iii) **Mutagenesis and cellular transformation in mammalian cells**

6-Nitrochrysene induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (*Hp*R) forward mutation assay in Chinese hamster ovary cells in the presence of a liver homogenate from Aroclor 1254-pretreated rats (Delclos & Hefflich, 1992). The mutation
frequency was higher in DNA repair-deficient Chinese hamster ovary cells than in repair-proficient cells. In contrast, exposure to 6-nitrochrysene and 6-aminochrysene did not result in a concentration-dependent increase in mutation frequency at the HPRT locus in human lymphoblastoid AHH-1 cells (Morris et al., 1994). Minimal metabolic activation of 6-nitro- or 6-aminochrysene by AHH-1 cells may account for the lack of a positive mutagenic response.

6-Nitrosochrysene also induced mutations at the Hprt locus in Chinese hamster ovary cells, predominantly base-pair substitution at A:T base pairs (Manjanatha et al., 1993). However, it mainly formed DNA adducts at deoxyguanosine (80%) while only 20% were probably formed through binding at deoxyadenosine, indicating that 6-nitrosochrysene-derived deoxyadenosine adducts are much more effective at producing mutations than their deoxyguanosine counterparts. In contrast, 1,2-DHD-6-AC-induced Hprt mutations in Chinese hamster ovary cells involved primarily G:C base-pair substitutions, which was consistent with the formation of a single major deoxyguanosine adduct formed by the microsome-catalysed reaction of 1,2-DHD-6-AC with DNA (Li et al., 1993).

The mutational profiles of 6-nitrochrysene and its metabolites, N-hydroxy-6-aminochrysene, 6-aminochrysene, 1,2-DHD-6-NC, 1,2-DHD-6-AC and 1,2-DHD-6-NHOH-C, were compared in the cII gene of lacI rat mammary epithelial cells in vitro (Guttenplan et al., 2007). 1,2-DHD-6-NHOH-C induced a mutational profile that was most similar to that of 6-nitrochrysene in vivo (Boyiri et al., 2004). When the mutation profiles of (±)-1,2-DHD-6-NC were examined in these cells, the [R,R]-isomer was a more potent mutagen than the [S,S]-isomer (Sun et al., 2009). The major types of mutation induced by the [R,R]-isomer were G:C to T:A, A:T to G:C and A:T to T:A mutations, which were similar to those obtained in the mammary gland of rats treated with 6-nitrochrysene in vivo (Boyiri et al., 2004).

6-Nitrochrysene induced morphological transformation in cultured Syrian hamster embryo cells (DiPaolo et al., 1983; Sala et al., 1987), Syrian hamster kidney BHK-21/c13 cells (Purchase et al., 1978), rat tracheal epithelial cells (Mitchell & Thomassen, 1990; Gray et al., 1994; West & Rowland, 1994) and human lung fibroblast WI38 or human liver cells (Purchase et al., 1978) but not in murine BALB/c 3T3 or C3H 10T1/2 cells (Sala et al., 1987; Sheu et al., 1994).

(c) Other biological effects of 6-nitrochrysene

The effect of 6-nitrochrysene on the expression of p53 and p21Cip1 proteins and cell-cycle regulation was examined in MCF-7 and MCF-10A cells (Sun et al., 2007). Although treatment with of 6-nitrochrysene did not increase the level of total p53 protein in either cell line, p21Cip1 protein and a concomitant increase in cells in the G1 phase were observed in MCF-10A, but not MCF-7 cells. Treatment with 1,2-DHD-6-NHOH-C resulted in a significant induction of p53 protein in MCF-7 cells. The authors concluded that the lack of a p53 response to 6-nitrochrysene may imply a lack of the protective functions that are mediated by p53 (i.e. DNA repair mechanisms).

6-Nitrochrysene inhibited the growth of cultured rat but not human epidermal cells (Chun et al., 2000).

4.3 Other relevant data

No data were available to the Working Group.

4.4 Mechanistic considerations

6-Nitrochrysene can be activated metabolically via ring oxidation, nitroreduction or a combination of both pathways to yield reactive electrophilic species that can react with DNA and result in the formation of DNA adducts (Boyiiri et al., 2002; El-Bayoumy et al., 2004). 6-Nitrochrysene induces hepatic and pulmonary
and CYP1A1 and can thereby enhance its own CYP-mediated bioactivation (Chen et al., 1998). Several DNA adducts have been detected in rats and mice treated with 6-nitrochrysene (IPCS, 2003). Such DNA damage has been suggested to contribute to its potent mutagenic and carcinogenic activities, including the induction of rat mammary adenocarcinomas (Delclos et al., 1987b; Li et al., 1994; Chae et al., 1996; Krzeminski et al., 2000). These DNA lesions are liable to cause mutations if they are not removed by cellular defence mechanisms before DNA replication occurs. A recent study in human cell extracts demonstrated the inefficient nucleotide excision repair of two DNA adducts – N-(dG-8-yl)-6-AC and 5-(dG-N²-yl)-6-AC – derived from the nitroreduction pathway of 6-nitrochrysene (Krzeminski et al., 2011). However, the efficiency of nucleotide excision repair of DNA adducts of 6-nitrochrysene derived from a combination of ring oxidation and nitroreduction pathways has not yet been determined. Nitroreduction and ring oxidation leads to the formation of 1,2-DHD-6-NHOH-C. The mutation profile of 6-nitrochrysene in the rat mammary gland in vivo was compared with that of its known metabolites in the cII gene of lacI mammary epithelial cells in vitro and showed that the profile of 1,2-DHD-6-NHOH-C was the most similar (Guttenplan et al., 2007). These results, in conjunction with the known structure of the major DNA adduct detected in the rat mammary gland (i.e. 5-(dG-N²-yl)-1,2-DHD-6-AC), support the hypothesis that 1,2-DHD-6-NHOH-C is the ultimate mutagen/carcinogen. The mutation profile and spectra of the proximate mutagens [R,R]- and [S,S]-1,2-DHD-6-NC were compared in the cII gene of lacI mammary epithelial cells in vitro and, although the [R,R]-enantiomer was a significantly more potent mutagen than the [S,S]-enantiomer, the mutation spectra were similar (Sun et al., 2009). While the in vitro results suggest that the [R,R]-enantiomer is the proximate carcinogen in the rat mammary gland, the comparative carcinogenic activity of both enantiomers in this organ in vivo has not yet been determined.

In contrast to numerous other DNA-damaging agents, such as benzo[a]pyrene, that are known to stimulate the expression of p53 protein, the lack of a p53 response to 6-nitrochrysene implies the lack of protective functions mediated by this protein (e.g. DNA repair mechanisms) after exposure to 6-nitrochrysene, which may, in part, account for the carcinogenicity of 6-nitrochrysene in rat mammary glands (Sun et al., 2007).

5. Summary of Data Reported

5.1 Exposure data

6-Nitrochrysene was reported to be a constituent in the particulate phase of both diesel and gasoline engine exhaust emissions. No evidence was found that it has been produced in commercial quantities or used for purposes other than laboratory applications. No evidence was found of any source of exposure to 6-nitrochrysene other than traffic exhaust emissions. In ambient air, 6-nitrochrysene was found at concentrations in the subnanogram and low to subpicagram per cubic metre range in airborne particulate matter collected at urban, and rural and remote locations, respectively. Blood analysis confirmed exposure to 6-nitrochrysene of inhabitants in a rural area and several occupational groups.

5.2 Human carcinogenicity data

No data were available to the Working Group.
5.3 Animal carcinogenicity data

Several studies have investigated tumour formation in rodents that were administered 6-nitrochrysene shortly after birth and then observed for up to 1 year after treatment. Eight studies of intraperitoneal injection were conducted in newborn mice and one in newborn rats.

In mice, increases in the incidence of malignant lymphoma in one study, and of benign or malignant tumours of the lung (adenoma or adenocarcinoma) and liver (hepatocellular adenoma or carcinoma) in both sexes were observed. The study in rats showed an increased incidence of colon adenocarcinoma in both sexes, but no lung or liver tumours. Thus, intraperitoneal injection caused a species-specific increase in the incidence of lung and liver tumours in mice and of colon tumours in rats. In two studies of oral administration and one of intramammary injection in rats, an increased incidence of mammary adenocarcinomas was observed. In addition, 6-nitrochrysene showed initiating activity in one skin tumour initiation–promotion study in mice.

5.4 Mechanistic and other relevant data

6-Nitrochrysene is metabolically activated via nitroreduction, ring-oxidation or a combination of both pathways, leading to the formation of DNA adducts. When administered orally or by intramammary injection to rats, 6-nitrochrysene induced mammary adenocarcinomas; its carcinogenic activity in the rat mammary gland exceeds that of benzo[a]pyrene – classified as a Group 1 human carcinogen by the IARC. Furthermore, 6-nitrochrysene was found to induce lung, liver and skin tumours in mice. Human hepatic and pulmonary microsomes and human mammary epithelial cells metabolized 6-nitrochrysene to reactive metabolites that caused DNA damage. 6-Nitrochrysene induced the same DNA adducts in human mammary epithelial cells as those detected in the mammary gland – the target organ – of rats. Haemoglobin adducts derived from 6-nitrochrysene have been identified in humans exposed to diesel engine exhaust. The mutation spectrum induced by 6-nitrochrysene in mammary tissue in lacZ-transgenic mice was dominated by mutations at G and A residues and could be linked to the mutation profile of 1,2-dihydro-dihydroxy-6-hydroxyamino-chrysene, a metabolite that is formed by a combination of nitroreduction and ring-oxidation. The formation of its major adduct, 5-(deoxyguanosin-N2-yl)-1,2-dihydro-dihydroxy-6-amino-chrysene, in the rat mammary gland supports the hypothesis that 1,2-dihydro-dihydroxy-6-hydroxyamino-chrysene is the ultimate carcinogen. Mutations in the H-Ras and K-Ras oncogenes were observed in lung tumours from mice exposed to 6-nitrochrysene.

Overall, the Working Group considered that there is strong mechanistic evidence to support the carcinogenic properties of 6-nitrochrysene.

6. Evaluation

6.1 Cancer in humans

No data were available to the Working Group.

6.2 Cancer in experimental animals

There is sufficient evidence in experimental animals for the carcinogenicity of 6-nitrochrysene.

6.3 Overall evaluation

6-Nitrochrysene is probably carcinogenic to humans (Group 2A).
References

Delclos KB, Cerniglia CE, Dooley KL et al. (1990). The role of intestinal microflora in the metabolic activation of 6-nitrochrysene to DNA-binding derivatives in mice. Toxicology, 60: 137–150. doi:10.1016/0300-483X(90)90158-6 PMID:2319546

Delclos KB, Miller DW, Lay JO Jr et al. (1987a). Identification of C8-modified deoxyinosine and N2-and
C8-modified deoxyguanosines as major products of the in vitro reaction of N-hydroxy-6-aminochrysene with DNA and the formation of these adducts in isolated rat hepatocytes treated with 6-nitrochrysene and 6-aminochrysene. *Carcinogenesis*, 8: 1703–1709. doi:10.1093/carcin/8.11.1703 PMID:3664962

Krzeminski J, Desai D, Lin JM et al. (2000). Synthesis of anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-nitrochrysene and its reaction with 2′-deoxyguanosine-5′-monophosphate, 2′-deoxyadenosine-5′-monophosphate, and calf thymus DNA in

Rosenkranz HS & Mermelstein R (1983). Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res, 114: 217–267. PMID:6300670

