Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |---|---|--|--|--------------------------|---|---|--|--| | Bernstein et
al. (2006)
Northern
California,
Ontario | 2311 cases
ascertained via
Northern California
Family Registry,
Ontario Familial
Breast Cancer
Registry | Recruited via
random digit
dialling only in
Ontario | Interviewer-
administered
standardized
questionnaire | Female
breast cancer | Number of
diagnostic chest
or abdominal X-
rays | OR of CHEK2*1100delC positivity among cases with < 2 diagnostic chest or abdominal X-rays 1.0 ≥ 2 diagnostic chest or abdominal X-rays (vs < 2) 1.56 (95% CI: 0.65–3.74), OR of CHEK2*1100delC positivity among cases with ≥ 2 diagnostic chest or abdominal X-rays (vs < 2) 2.19 (95% CI: 0.91–5.28) | None | Poor
ascertainment of
radiation
exposure and
disease
(particularly
controls);
potential for
recall bias | | Boffetta et al. (2005) 15 areas in Romania, the Russian Federation, Poland, Slovakia, Czech Republic, Hungary 1998–2002 | 2859 histologically
and cytologically
confirmed cases | Hospital controls
in same area (or in
Poland population
controls) | Interviewer-
administered
questionnaire,
supplemented
by expert
assessment of
likely exposure
by job type | Lung cancer | Number of diagnostic X-rays | OR of 0 exposures 1, OR of 1–10 X-rays 1.21 (95% CI: 0.99–1.48), OR of 11–20 X-rays 1.33 (95% CI: 1.08–1.64), OR of 21–30 X-rays 1.49 (95% CI: 1.18–1.87), OR of 31–40 X-rays 1.52 (95% CI: 1.17–1.99), OR of > 40 X-rays 2.15 (95% CI: 1.50–3.08) (trend $P < 0.0001$) | Adjustment for age, sex, centre, pack years of smoking | Poor
ascertainment of
radiation
exposure; poor
ascertainment of
cigarette
smoking;
potential for
confounding by
indication,
potential recall
bias | | Gilbert et al.
(2003)
international
Hodgkin's
disease study | 227 cases selected
from 19 046 1-year
survivors of
Hodgkin's disease
(HD) 1/1965–
12/1994 in US and
Netherlands with
pathological and
clinical confirmation
of diagnosis | 2 individually
matched controls
per case (total
455), matched on
age at HD
diagnosis, calendar
year, gender,
registry | Clinical data | Lung cancer | > 0–4.9 Gy
5.0–14.9 Gy
15.0–29.9 Gy
30.0–39.9 Gy
40.0+ Gy | Odds ratio 1.64 (0.53–5.2) 4.18 (0.70–21) 2.69 (0.15–15) 8.50 (3.3–24) 6.27 (2.2–19) Excess OR/Gy 0.15 (0.06–0.39) | Adjustment for smoking, chemotherapy | Good
ascertainment of
radiation +
chemotherapy
exposure | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |---|--|--|--|--------------------------|--|--|---|---| | Hatcher et al. (2001) cases in Georgia, Michigan, New Jersey, 8/1986–4/1989 aged 30–79 | 540 cases reported to
Georgia Center for
Cancer Statistics,
Metropolitan Detroit
Cancer Surveillance
System, New Jersey
State Cancer
Registry | Frequency matched controls obtained via random digit dialling (ages 30–64) or random sampling from Medicare database listings (ages 65–79) | Interviewer-
administered
questionnaire | Multiple
myeloma | Number of
diagnostic X-
rays | OR of < 5 exposures 1, OR
of 5–9 X-rays 0.9 (95% CI:
0.7–1.2), OR of 10–19 X-
rays 1.0 (95% CI: 0.7–1.3),
OR of > 20 X-rays 0.9
(95% CI: 0.7–1.2) | Adjustment for
education, age, sex,
gender, state | Poor ascertainment of radiation exposure, relatively low response rate (63% whites, 67% blacks), possible biases due to control sampling, potential for recall bias | | Hung et al. (2006) 15 areas in Romania, the Russian Federation, Poland, Slovakia, Czech Republic, Hungary 1998–2002 | 2238 histologically
and cytologically
confirmed cases | 2289 frequency
matched (by sex,
age, centre)
hospital controls in
same area (or in
Warsaw population
controls) | Interviewer-
administered
questionnaire,
supplemented
by expert
assessment of
likely exposure
by job type | Lung cancer | Ever vs never
exposure to
diagnostic X-
rays, also by
number of
diagnostic X-
rays | CCND1 G870A variant interaction OR (X-ray ever vs never) 1.01 (95% CI: 0.68 – 1.49) trend OR: 1.16 (95% CI: 1.05–1.27); CDKN2A A148T variant interaction OR (X-ray ever vs never) 1.22 (95% CI: 0.62 – 2.40); TP53 R72P variant interaction OR (X-ray ever vs never) of 1.00 (95% CI: 0.72 – 1.38); TP53 intron 3 variant interaction OR (X-ray ever vs never) 5.69 (95% CI: 1.33 – 24.3) trend OR: 2.12 (95% CI: 1.12–4.02) | Adjustment for age, sex, country, pack years of smoking | Poor
ascertainment of
radiation
exposure; poor
ascertainment of
cigarette
smoking;
potential for
confounding by
indication, recall
bias | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |--|---|--|---|---|---|--|--|--| | Infante-Rivard
(2003)
Quebec 1980–
1998 | 701 cases aged 0–14
derived form hospital
and other clinical
records | 701 age, sex region
matched controls
selected from
family allowance
files | Interviewer-
administered
questionnaire | Acute
lymphocytic
leukaemia
(ICD9 204.0) | Ever vs never
exposure to
postnatal
diagnostic X-
rays, also by
number of
diagnostic X-
rays | None OR = 1, 1 X-ray
OR = 1.16 (95% CI: 0.87 –
1.55), \geq 2 X-rays
OR = 1.48 (95% CI: 1.11 –
1.97) trend $P = 0.006$ | Adjustment for mother's age, education | Poor
ascertainment of
radiation
exposure,
potential for
recall bias | | Millikan et al. (2005) 15 counties in central and eastern North Carolina 1993–2001 | 1808 invasive cases, 503 in situ cases | 2022 cases frequency matched to cases based on age and race, via Division of Motor Vehicles (ages < 65) or US Health care Financing Administration (ages ≥ 65) databases | Interviewer-
administered
questionnaire | Invasive and in situ female breast cancer | Number of diagnostic X-rays | 0–1 variant codons among <i>XRCC3</i> , <i>NBS1</i> , <i>XRCC2</i> , <i>BRCA2</i> Number of mammograms (2 y lag) None OR = 1, 1–2 OR = 1.0 (95% CI: 0.7 − 1.5), 3–5 OR = 0.7 (95% CI: 0.5 − 1.0), 6–10 OR = 0.7 (95% CI: 0.4 − 1.0), ≥ 11 OR = 0.9 (95% CI: 0.6 − 1.4) trend <i>P</i> = 0.16; 2–4 variant codons among <i>XRCC3</i> , <i>NBS1</i> , <i>XRCC2</i> , <i>BRCA2</i> Number of mammograms (2 y lag) None OR = 1, 1–2 OR = 0.8 (95% CI: 0.5 − 1.1), 3–5 OR = 1.3 (95% CI: 0.8 − 1.9), 6–10 OR = 1.3 (95% CI: 0.9 − 2.1), ≥ 11 OR = 1.8 (95% CI: 1.2 − 2.8) trend <i>P</i> = 0.0003 | Adjustment for age, race | Poor ascertainment of radiation exposure, potential for recall bias | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |---|---|--|-----------------------|---|--|---|---|--| | Myles et al. (2008) cases under age 60 diagnosed in two hospitals in United Kingdom | 431 cases | 409 frequency
matched controls
(by age to within
5 years), from
same GP practice
as cases | Postal questionnaire | Prostate cancer | Barium meal (mean dose 0.2–0.4 mGy), barium enema (mean dose 10–25 mGy), intravenous pyelogram (IVP) (mean dose 3–4 mGy), X-ray (hip/pelvic, upper leg) (mean dose 2–5 mGy for hip/pelvic) | Barium meal > 5 years previously OR = 1.21 (95% CI: 0.84 – 1.73); barium enema > 5 years previously OR = 2.06 (95% CI: 1.01 – 4.20); IVP > 5 years previously OR = 1.67 (95% CI: 0.92 – 3.03); hip/pelvic X-ray > 5 years previously OR = 2.23 (95% CI: 1.42 – 3.49); upper leg X-ray > 5 years previously OR = 1.11 (95% CI: 0.65 – 1.89); | Adjustment for age
at diagnosis, social
class | Poor
ascertainment of
radiation
exposure,
potential for
recall bias,
potential
confounding by
indication | | Neglia et al.
(2006)
US childhood
cancer study | from 14 361 5-year survivors of childhood cancer 1/1970–12/1986 in CCS centres in US, diagnosed with first primary cancer before age 21, with pathological and clinical confirmation of diagnosis | 4 individually matched controls per case (total 464), matched on age at original cancer diagnosis (± 2 years), sex | Clinical data records | Central
nervous
system (ICD-
O-2 9 380–
9523, 9 530–
9539) | <1 Gy,
1–9.9 Gy,
10.0–19.9 Gy,
20.0–29.9 Gy,
30.0–44.9 Gy,
≥ 45 Gy | OR of < 1 Gy = 1, OR of 1–9.9 Gy 0.00 (95% CI: 0.00 – 2.44), OR of 10.0–19.9 Gy 9.71 (95% CI: 2.73 – 34.5), OR of 20.0 – 29.9 Gy 13.4 (95% CI: 4.30 – 41.79), OR of 30.0 – 44.9 Gy 50.0 (95% CI: 13.3 – 187.4), OR of \geq 45 Gy 32.8 (95% CI: 8.38 – 128.3) ERR /Gy 0.33 (95% CI: 0.07 – 1.71) (gliomas) ERR /Gy 1.06 (95% CI: 0.21 – 8.15) (meningiomas) ERR /Gy 0.69 (95% CI: 0.25 – 2.23) (all CNS tumours) | Adjusted for type of first cancer | Good
ascertainment of
radiation +
chemotherapy
exposure, follow-
up | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |---|--|--|---|----------------------------------|--|--|--|--| | Ronckers et al. (2006)
US childhood cancer study | 72 cases selected
from 14 361 5-year
survivors of
childhood cancer
1/1970–12/1986 in
CCS centres in US,
diagnosed with first
primary cancer
before age 21, with
pathological and
clinical confirmation
of diagnosis | 4 individually matched controls per case (total 288), matched on age at original cancer diagnosis (± 2 years), sex | Clinical data records | Thyroid | 0 – 62 Gy (mean
cases 24 Gy,
mean controls
13 Gy) | ERR /Gy 1.3 (95% CI: 0.4 – 4.1) | Adjusted for quadratic cell killing term | Good
ascertainment of
radiation +
chemotherapy
exposure, follow-
up | | Rubino <i>et al</i> . (2005) cancer after breast cancer | 14 cases | 28 individually matched controls (by age to within 6 years, by calendar year of treatment) within cohort of 7 711 | Dosimetric
estimates based
on clinical
records | Bone & soft
tissue
sarcoma | Mean case dose (to site of bone/soft tissue sarcoma) 38.8 Gy (range 11.8 – 60.2), mean control dose (at same site) 18.9 Gy (range 0.01 – 79.8) | Excess odds ratio at 1 Gy
(linear-quadratic model)
0.05 (95% CI: ? – 1.18) | None | Good
ascertainment of
radiation
exposure | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |--|---|--|--|---|---------------------|--|--|--| | Stålberg <i>et al.</i> (2007)
Swedish
prenatal
exposure
study, 1975–
1984 | 512 cases diagnosed
via Swedish Cancer
Registry at age < 15 | 524 frequency
matched controls
(by sex, year of
birth) selected
from Medical Birth
Register, alive and
resident in Sweden
to age 15 | Hospital records
of antenatal
diagnostic
procedures (X-
ray, ultrasound) | Childhood
brain cancer
(ICD7 193) | None | All brain tumours abdominal X-ray OR: 1.02 (95% CI: 0.64 – 1.62); nonabdominal X-ray OR: 0.78 (95% CI: 0.52 – 1.17) Astrocytoma low grade abdominal X-ray OR: 0.72 (95% CI: 0.36 – 1.42); nonabdominal X-ray OR: 0.96 (95% CI: 0.57 – 1.62) Astrocytoma high grade abdominal X-ray OR: 1.06 (95% CI: 0.39 – 2.86); nonabdominal X-ray OR: 0.36 (95% CI: 0.12 – 1.08) PNET abdominal X-ray OR: 1.88 (95% CI: 0.92 – 3.83); non-abdominal X-ray OR: 0.81 (95% CI: 0.83 – 1.69) | Adjustment for maternal age at birth, parity, multiple birth, mother's country of birth, hypertension during pregnancy, mode of delivery, breech position, gestational age at birth, birth weight, head circumference at birth, hospital level | Limited ascertainment of radiation exposure (only yes vs no), otherwise thorough study | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |--|--|--|-----------------------|--------------------------|---|---|---|--| | Travis et al. (2000) international testicular cancer study | 36 cases selected from 18 567 1-year survivors of testicular cancer 1/1970–12/1993 in Denmark, Finland, Sweden, Ontario, Iowa, Connecticut, New Jersey, Netherlands diagnosed before age 30 with pathological and clinical confirmation of diagnosis | 3 individually
matched controls
per case (2 per case
for New Jersey)
(total 106),
matched on
registry, age at HD
diagnosis, year of
HD diagnosis | Clinical data records | Leukaemia | 0 – 7.5 Gy,
7.5–9.9 Gy,
10.0–14.9 Gy,
15.0–19.9 Gy,
≥ 20 Gy | OR of 0 – 7.5 Gy = 1, OR
of 7.5–9.9 Gy 3.5 (95% CI:
0.6 – 27), OR of 10.0 –14.9
Gy 2.4 (95% CI: 0.4 – 20),
OR of 15.0 – 19.9 Gy 4.9
(95% CI: 0.5 – 57), OR of
\geq 20 Gy 19.7 (95% CI: 1.5
– 590)
ERR /Gy 0.27 (95% CI:
0.02 – 1.2) | Adjustment for chemotherapy | Good
ascertainment of
radiation +
chemotherapy
exposure, follow-
up | | Travis et al. (2003) international Hodgkin's disease study | 105 cases selected from 3 817 female 1-year survivors of Hodgkin's disease (HD) 1/1965–12/1994 in Denmark, Finland, Sweden, Ontario, Iowa, Netherlands diagnosed before age 30 with pathological and clinical confirmation of diagnosis | ≥ 2 individually matched controls per case (total 266), matched on registry, age at HD diagnosis, year of HD diagnosis | Clinical data | Female
breast cancer | 0 – 3.9 Gy,
4.0–6.9 Gy,
7.0–23.1 Gy,
23.2–27.9 Gy,
28.0–37.1 Gy,
37.2–40.4 Gy,
40.5–61.3 Gy | OR of $0 - 3.9$ Gy = 1, OR of 4.0 – 6.9 Gy 1.8 (95% CI: 0.7 – 4.5), OR of 7.0 – 23.1 Gy 4.1 (95% CI: 1.4 – 12.3), OR of 23.2 – 27.9 Gy 2.0 (95% CI: 0.7 – 5.9), OR of 28.0 – 37.1 Gy 6.8 (95% CI: 2.3 – 22.3), OR of 37.2 – 40.4 Gy 4.0 (95% CI: 1.3 – 13.4), OR of 40.5 – 61.3 Gy 8.0 (95% CI: 2.6 – 26.4) Excess OR /Gy 0.15 (95% CI: 0.04 – 0.73) for women without CT receiving chest RT; excess OR /Gy 0.049 (95% CI: 0.004 – 0.34) for women with CT receiving ≥ 5 Gy to ovaries | Adjustment for ovary dose, chemotherapy, number of cycles of treatment with alkylating agents | Good
ascertainment of
radiation +
chemotherapy
exposure, follow-
up | Table 2.2. Case-control studies of X-ray exposure and cancer | Reference,
study location
and period | Characteristics of cases | Characteristics of controls | Exposure assessment | Organ site
(ICD code) | Exposure categories | Relative risk (95% CI)* | Adjustment for potential confounders | Comments | |---|--|--|---------------------|--------------------------|---|---|---|--| | van Leeuwen
et al. (2003)
Netherlands
Hodgkin's
disease study | 48 cases selected from 770 female survivors of Hodgkin's disease (HD) 1/1965–12/1988 in Netherlands diagnosed before age 40 with pathological and clinical confirmation of diagnosis | ≥ 4 individually matched controls per case (total 175), matched on age at HD diagnosis (± 3 years), year of HD diagnosis (± 5 years) | Clinical data | Female
breast cancer | 0.26 – 3.9 Gy,
4.0–23.2 Gy,
24.0–38.2 Gy,
38.5–56 Gy | OR of 0.26 – 3.9 Gy = 1,
OR of 4.0–23.2 Gy 1.11
(95% CI: 0.32 – 3.85), OR
of 24.0–38.2 Gy 4.20 (95%
CI: 0.99 – 17.8), OR of
38.5 – 56 Gy 5.16 (95% CI:
1.27 – 21.0)
Total ERR /Gy 0.03 (95%
CI: 0.002 – 0.06);
RT only women ERR /Gy
0.06 (95% CI: 0.01 – 0.13) | Adjustment for
ovary dose,
chemotherapy | Good
ascertainment of
radiation +
chemotherapy
exposure, follow-
up |