
THIOTEPA
Thiotepa was considered by a previous IARC Working Group in 1989 (IARC, 1990). Since that 
time, new data have become available, these have been incorporated into the Monograph, 
and taken into consideration in the present evaluation.

1.	 Exposure Data

1.1	 Identification of the agent

Chem. Abstr. Serv. Reg. No.: 52-24-4
Chem. Abstr. Name: Aziridine, 1,1′,1′′-phos-
phinothioylidynetris-
IUPAC Systematic Name: tris(Aziridin-1-
yl)-sulfanylideneλ5phosphane
Synonyms: Phosphorothioic acid tri-
ethylenetriamide; phosphorothioic tri-
amide, N,N′,N′′-tri-1,2-ethanediyl-; 
thiophosphamide; thiophosphoramide, 
N,N′,N′′-tri-1,2-ethanediyl-; Thio-
plex; thiotriethylenephosphoramide; 
N,N′,N′′-triethylenethiophosphoramide; 
tri(ethyleneimino)thiophosphoramide; 
tri-1-aziridinylphosphine sulfide; tri-
aziridinylphosphine sulfide; triethylene-
thiophosphoramide; triethylenethiophos-
phorotriamide; tris(1-aziridinyl)phosphine 
sulfide; tris(aziridinyl)phosphine sulfide
Description: Fine, white, crystalline flakes 
with a faint odour (McEvoy, 2007)

1.1.1	 Structural and molecular formulae, and 
relative molecular mass
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C6H12N3PS
Relative molecular mass: 189.22

1.2	Use of the agent

Information for Section 1.2 is taken from 
McEvoy (2007), Royal Pharmaceutical Society of 
Great Britain (2007), and Sweetman (2008).

1.2.1	 Indications

Thiotepa has been used intravesically for the 
treatment of residual tumours and as adjuvant 
therapy for prophylaxis of superficial bladder 
cancer. Thiotepa has also been used parenterally 
in the palliative treatment of adenocarcinoma of 
the breast and ovary. Thiotepa may be used by 
intracavitary injection to control pleural, peri-
cardial, or peritoneal effusions caused by meta-
static tumours.
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1.2.2	 Dosage

Thiotepa may be administered by intrave-
nous, intramuscular, intrapleural, intraperito-
neal, intrapericardial or intratumour injection, 
or by intravesical instillation.

Thiotepa may be given rapidly intrave-
nously in doses of 0.3–0.4 mg/kg at intervals of 
1–4 weeks. The drug has also been given intra-
venously in doses of 0.2 mg/kg or 6 mg/m2 daily 
for 4 or 5 days at intervals of 2–4 weeks. Thiotepa 
has also been given intramuscularly in doses of 
15–30 mg in various schedules.

The usual intracavitary dose of thiotepa is 
0.6–0.8  mg/kg at intervals of at least 1  week, 
although a dose of 15–30  mg has been used 
intrapericardially.

For the treatment of superficial bladder 
tumours, the dose of thiotepa generally ranges 
from 30–60  mg, instilled by catheter in saline 
directly into the bladder. The usual course of 
treatment is once a week for 4 weeks. Single doses 
of 90 mg in 100 mL of sterile water have also been 
used prophylactically following local resection.

For malignant effusions, doses of up to 60 mg 
of thiotepa in 20–60 mL of sterile water may be 
instilled after aspiration; in the USA, the licensed 
dose is 0.6–0.8  mg/kg, a dose similar to that 
suggested for injection directly into tumours.

Thiotepa is available as 15 and 30  mg solu-
tions for parenteral administration.

1.2.3	 Trends in use

Although thiotepa has largely been replaced 
by the nitrogen mustards, it still has specific uses, 
particularly as a component of experimental 
high-dose chemotherapy regimens.

2.	 Cancer in Humans

Several cases of leukaemia following treat-
ment with thiotepa alone have been reported. As 
was the case in the previous IARC Monograph 
(IARC, 1990), only one analytical study focused 
specifically on the cancer risk of thiotepa in 
humans (Kaldor et al., 1990). This study, which 
used a case–control methodology within a cohort 
of women treated for ovarian cancer, found a 
strong association between the risk for leukaemia 
and treatment with thiotepa with a relative risk 
of 8.3 in the lower dose group (n = 4), and 9.7 in 
the higher dose group (n = 5).

3.	 Cancer in Experimental Animals

Thiotepa was tested for carcinogenicity by 
intraperitoneal administration in mice and rats, 
and by intravenous administration in male rats 
(Table 3.1).

￼ It increased the incidence of lung tumours 
and malignant lymphomas in mice of each sex. 
In rats, intraperitoneal administration increased 
the incidence of lymphohaematopoietic malig-
nancies in males and of uterine adenocarci-
nomas and mammary carcinomas in females. 
Squamous cell carcinomas of the skin or ear were 
also induced in both sexes. Intravenous adminis-
tration to male rats induced tumours at a variety 
of sites (IARC, 1990).

Since the previous IARC Monograph (IARC, 
1990), a study with CB6F1-TgHras2 transgenic 
(rasH2) mice was performed during an interlab-
oratory validation study. Thiotepa was intraperi-
toneally administered to two groups of 15 male 
and 15 female rasH2 mice, 7–9 weeks of age, at 
doses of 1 and 2 mg/kg bw, 3 times per week for 
24 weeks. Two similar groups of wild-type mice 
were also treated, and two groups of ten male and 
ten female rasH2 and wild-type mice served as 
vehicle controls. Forestomach papillomas, lung 
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Table 3.1 Studies of cancer in experimental animals exposed to thiotepa

Species, 
strain (sex) 
Duration 
Reference

Route 
Dosing regimen 
Animals/group at start

Incidence of tumours Significance Comments

Mouse, A/He 
(M, F) 
24 wk 
Stoner et al. 
(1973)

i.ep. 
0 (untreated), 0, 19, 47, 94 (total 
dose) mg/kg bw (total 12 doses) 3 
×/wk for 4 wk 
100, 160, 20, 20, 20

Lung:  
18/94, 48/154, 11/20, 10/19, 16/20

P < 0.05 
(47 mg/kg bw) 
P < 0.001 
(94 mg/kg bw)

95~99% pure 
Control groups were either untreated 
or treated with vehicle i.ep. 3 ×/wk for 
8 wk (total 24 doses)

Mouse, B6C3F1 
(M, F) 
86 wk 
NCI (1978)

i.ep. 
0, 0, 1.15, 2.3 mg/kg bw 3 ×/wk 
for 52 wk 
15, 15, 35, 35 
15, 15, 35, 35

Malignant lymphomas: 
M–1/18a, 1/8, 2/24, 26/28

P < 0.001  
(2.3 mg/kg)

98 ± 1% pure

F–0/29a, 0/14, 5/26, 32/32 P < 0.001 
(2.3 mg/kg)

Rat, Sprague-
Dawley (M, F) 
86 wk 
NCI (1978)

i.ep. 
0, 0.7, 1.4, 2.8 mg/kg bw 
3 ×/wk for 52 wk 
20+20, 39, 35, 35 
20+20, 31, 35, 35

Myeloid leukaemia / malignant 
lymphomas:

98 ± 1% pure 
Analyses of the incidence in the high 
dose groups are not included, due to 
low survival for both sexes

M–0/29a vs 6/34 (0.7 mg/kg) P = 0.020
M–0/30a vs 6/16 (1.4 mg/kg) P = 0.001
Skin or ear (squamous cell 
carcinomas):
M–0/29a vs 7/33 (0.7 mg/kg) P = 0.009
M–0/30a vs 3/13 (1.4 mg/kg) P = 0.023
Uterine (adenocarcinomas):
F–0/28a, 7/21 (1.4 mg/kg) P = 0.001
Mammary gland (adenocarcinomas):
F–1/28a, 8/24 (1.4 mg/kg) P = 0.006
Skin (squamous cell carcinomas):
F–0/28a, 8/21 (1.4 mg/kg) P < 0.001

Rat, BR 46 (M) 
52 wk 
Schmähl & 
Osswald (1970), 
Schmähl (1975)

i.v. 
0, 1 mg/kg bw, 
weekly for 52 wk 
89, 48

Malignant tumoursb: 
4/65, 9/30

P < 0.01 > 98% pure

Benign tumours: 
3/65, 5/30

a	 pooled control group
b	 tumours of various origin
bw, body weight; F, female; i.ep., intraepithelial; i.v., intravenous; M, male; vs, versus; wk, week or weeks
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adenomas, and thymic lymphomas were induced 
in both treated rasH2 and wild-type mice. Lung 
adenocarcinomas were observed only in treated 
rasH2 mice. There was a higher incidence of fores-
tomach papillomas in male rasH2 mice treated 
with 2 mg/kg thiotepa than in the corresponding 
wild-type mice and rasH2 controls. The increase 
in the incidence of forestomach papillomas was 
dose-dependent in rasH2 mice (Yamamoto et al., 
1998a, b). [The Working Group noted the limited 
reporting of the study, i.e., no tumour incidences 
were provided.]

4.	 Other Relevant Data

4.1	Absorption, distribution, 
metabolism, and excretion

In humans, intravenous injection of thiotepa 
results in a peak blood concentration of thiotepa 
within 5  minutes, and after intraperitoneal 
administration, the peak plasma concentration 
is reached within 25 minutes. Distribution of 
thiotepa is rapid and is followed by fast elimina-
tion from the plasma compartment, with a half-
life of 1–3  hours. Triethylenephosphoramide 
(TEPA), a metabolite of thiotepa, is detected in 
plasma 5–10 minutes after intravenous injection, 
and persists longer in plasma with a half-life of 
3–21 hours. Both thiotepa and TEPA penetrate 
the cerebrospinal fluid (IARC, 1990; Maanen 
et al., 2000).

The urinary excretion of unchanged thiotepa 
is approximately 0.1–1.5% of the total admin-
istered thiotepa, and that of TEPA, 0.2–25%. 
Thiotepa can form conjugates with glutathione, 
and can be excreted as a thiotepa-mercapturic 
acid conjugate in the urine (Maanen et al., 2000).

Following thiotepa administration to rodents 
(intraperitoneal or intravenous injection), 
thiotepa is distributed rapidly to different organs, 
with most available for metabolism in the liver 

(IARC, 1990; Maanen et al., 2000). Many meta-
bolic studies of thiotepa in various species (rat, 
dog, rabbit, and humans) have resulted in the 
identification of TEPA as the major metabolite 
of thiotepa. The metabolism of thiotepa to TEPA 
is mediated by hepatic cytochrome P450 (CYP) 
(Teicher et al., 1989; Hagen et al., 1991; Chang 
et al., 1995).

Plasma elimination of thiotepa after intra-
venous administration to mice follows a two-
compartment model. The half-life is 0.21 
minutes for the first phase, and 9.62 minutes 
for the second. The major urinary metabolite 
in rats, rabbits, and dogs following intravenous 
injection of 32P-thiotepa is TEPA. However, most 
of the radioactivity in mouse urine is recovered 
as inorganic phosphate. TEPA is largely excreted 
unchanged after administration to rats, and 
5–30% is converted to phosphate (IARC, 1990; 
Maanen et al., 2000).

4.2	Genotoxic effects

4.2.1	 Interaction with DNA

Both thiotepa and TEPA are alkylating 
agents. As alkylating agents, these compounds 
are potentially trifunctional. The principal site 
of reaction in DNA is the N7 position of guanine. 
Hydrolysis of thiotepa and TEPA produces aziri-
dine (ethyleneimine), a reactive monofunctional 
alkylating agent, that reacts to form 7-(2-aminoe-
thyl)deoxyguanosine in DNA, which is an 
unstable adducted base that leads to depurinated 
sites (Musser et al., 1992). An aminoethyl-N3-ad-
enine adduct is also formed (Andrievsky et al., 
1991; Musser et al., 1992). Thiotepa can also act 
as a bifunctional alkylating agent, forming inter-
strand cross-links between guanine bases (at the 
N7 position) of DNA (Maanen et al., 2000).

In common with other alkylating agents, 
therapeutic cytotoxicity is accompanied by 
mutagenic damage (Sanderson & Shield, 1996). 
Thiotepa cytotoxicity is attenuated by DNA 
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repair, principally base-excision repair (Limp-
Foster & Kelley, 2000; Kobune et al., 2001; Xu 
et al., 2001), and inhibition of DNA-repair 
processes enhances cytotoxicity (Frankfurt, 
1991; Frankfurt et al., 1993). However, lympho-
blastoid cell lines derived from patients with 
Fanconi anaemia are hypersensitive to thiotepa 
(but not TEPA), implying the formation of inter-
strand cross-links (Cohen et al., 1991). Cells that 
are defective in p53 are also more sensitive to 
thiotepa (Seo et al., 2002).

4.2.2	Mutagenic effects

(a)	 Mutagenicity in vitro

In the previous IARC Monograph (IARC, 
1990), it was reported that the compound induced 
gene mutations in Salmonella typhimurium and 
Aspergillus nidulans, and chromosomal aber-
rations and sister chromatid exchange in root 
meristem cells of Vicia faba. It also induced gene 
mutations, unscheduled DNA synthesis, micro-
nuclei, sister chromatid exchange, and chromo-
somal aberrations in mammalian cells in vitro. 
It also induced morphological transformation 
of mouse cells. One study reported that thiotepa 
did not induce significant levels of DNA damage 
in rat or human testicular cells at up to 1000 µM 
(Bjørge et al., 1996), measured as single-strand 
breaks and alkali-labile sites by alkaline elution.

(b)	 Mutagenicity in vivo

Studies of mutant frequencies in the endog-
enous hypoxanthine(guanine)phosphoribosyl 
transferase (Hprt) and the transgenic LacI gene 
of Big Blue rats have found that thiotepa induced 
more mutations in Hprt than in LacI (Chen et al., 
1998). The most common mutation was GC→TA 
transversions. Hprt mutations in lymphocytes 
were also analysed in Fischer 344 rats treated with 
thiotepa or TEPA, where GC→TA transversions 
were also the most common mutations observed 
(Casciano et al., 1999; Chen et al., 1999).

In the previous IARC Monograph (IARC, 
1990), thiotepa induced micronuclei in the 
bone marrow of rats and mice, chromosomal 
aberrations in mouse bone-marrow and liver 
cells, and in peripheral lymphocytes of rhesus 
monkeys and rabbits. It also caused sister chro-
matid exchange in mouse bone marrow in vivo. 
Increased frequencies of chromosomal aberra-
tions were observed in peripheral lymphocytes 
of patients receiving thiotepa therapy.

Subsequent studies have reported that thiotepa 
induces chromosomal aberrations in bone-
marrow cells of Armenian hamsters (Cricetulua 
migratorius), although at a lower frequency than 
in other rodents (Nersessian, 1994).

When administered to rhesus monkeys 
(Macaca mulatta) by bolus injection, thiotepa 
was more cytotoxic (chromosomal aberrations 
in bone marrow) than when the same dose was 
given by continuous infusion over 96 hours (Rao 
et al., 2005). The induction of chromosomal aber-
rations and sister chromatid exchange in rhesus 
monkeys by intravenous injection of thiotepa 
led to an increase of the number of both sister 
chromatid exchange and chromosomal aberra-
tions 14  hours after injection after which these 
levels began to fall. Sister chromatid exchange 
frequency reached control levels after 1 month, 
whereas chromosomal aberration frequency 
remained elevated after 6 months (Kuzin et al., 
1989). The dietary antimutagens chlorophyllin, 
β-carotene and α-linolenic acid inhibited 
thiotepa-induced chromosomal aberrations in 
Chinese hamsters by up to 85% (Renner, 1990).

Thiotepa was reported previously to induce 
chromosomal aberrations in germ cells, sperm 
abnormalities, and dominant lethal mutation in 
mice in vivo (IARC, 1990). In a subsequent study, 
thiotepa was reported to give similar yields of 
dominant lethal mutations in different strains 
of mice (Lyon & Glenister, 1991), in contrast to 
earlier reports showing differences among strains 
(Surkova & Malashenko, 1975, 1977). Subsequent 
studies have also reported that thiotepa produced 
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very low yields of translocations in mouse stem 
cells (De Luca et al., 1990).

Thiotepa induced chromosomal aberrations 
in the reproductive cells of the female yellow 
fever mosquito (Aedes aegypti) (Puttaraju, 1994).

4.3	Synthesis

Thiotepa is an alkylating agent that is carci-
nogenic via a genotoxic mechanism.

5.	 Evaluation

There is sufficient evidence in humans for 
the carcinogenicity of thiotepa. Thiotepa causes 
leukaemia.

There is sufficient evidence in experimental 
animals for the carcinogenicity of thiotepa.

Thiotepa is carcinogenic to humans (Group 1).
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