IARC MONOGRAPHS

ON THE

EVALUATION OF CARCINOGENIC
RISKS TO HUMANS

Solar and Ultraviolet Radiation

VOLUME 55

This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon,

11–18 February 1992

1992
In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. In 1980 and 1986, the programme was expanded to include the evaluation of the carcinogenic risk associated with exposures to complex mixtures and other agents.

The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed, and on specific exposure situations, to evaluate these data in terms of human risk with the help of international working groups of experts in chemical carcinogenesis and related fields; and to indicate where additional research efforts are needed.

This project is supported by PHS Grant No. 2-U01 CA33193-10 awarded by the US National Cancer Institute, Department of Health and Human Services. Additional support has been provided since 1986 by the Commission of the European Communities.
CONTENTS

NOTE TO THE READER .. 11
LIST OF PARTICIPANTS .. 13
PREAMBLE
 Background ... 19
 Objective and Scope ... 19
 Selection of Topics for Monographs 20
 Data for Monographs .. 21
 The Working Group .. 21
 Working Procedures ... 21
 Exposure Data ... 22
 Evidence for Carcinogenicity in Humans 23
 Studies of Cancer in Experimental Animals 27
 Other Relevant Data ... 29
 Summary of Data Reported ... 30
 Evaluation ... 32
 References ... 36
GENERAL REMARKS ... 39
SOLAR AND ULTRAVIOLET RADIATION 43
1. Exposure data ... 43
 1.1 Nomenclature .. 43
 1.1.1 Optical radiation ... 43
 1.1.2 Quantities and units .. 45
 1.1.3 Units of biologically effective ultraviolet radiation 46
 1.2 Methods for measuring ultraviolet radiation 47
 1.2.1 Spectroradiometry ... 47
 1.2.2 Wavelength-independent (thermal) detectors 48
 1.2.3 Wavelength-dependent detectors 48
 1.3 Sources and exposures .. 49
 1.3.1 Solar ultraviolet radiation 50
 (a) Measurements of terrestrial solar radiation 54
 (b) Personal exposures ... 57
 1.3.2 Exposure to artificial sources of ultraviolet radiation 58
 (a) Sources .. 58
 (i) Incandescent sources .. 58
 (ii) Gas discharge lamps .. 59
CONTENTS

(iii) Arc lamps ... 59
(iv) Fluorescent lamps ... 59
(v) Metal halide lamps ... 59
(vi) Electrodeless lamps ... 59
(b) Human exposure .. 60
(i) Cosmetic use ... 60
(ii) Medical and dental applications 63
(iii) Occupational exposures .. 66
(iv) General lighting .. 70
(c) Regulations and guidelines ... 70
(i) Cosmetic use ... 70
(ii) Occupational exposure ... 71

2. Studies of cancer in humans .. 73

2.1 Solar radiation ... 73

2.1.1 Nonmelanocytic skin cancer 73
(a) Case reports ... 73
(i) Studies of xeroderma pigmentosum patients 73
(ii) Studies of transplant recipients 73
(b) Descriptive studies .. 74
(i) Host factors .. 74
(ii) Anatomical distribution ... 74
(iii) Geographical variation ... 75
(iv) Migration ... 76
(v) Occupation ... 76
(c) Cross-sectional studies .. 77
(d) Case–control studies .. 83
(e) Cohort studies ... 86
(f) Collation of results .. 91

2.1.2 Cancer of the lip .. 93
(a) Descriptive studies .. 93
(i) Geographical variation ... 93
(ii) Occupation ... 94
(b) Case–control studies .. 94

2.1.3 Malignant melanoma of the skin 95
(a) Case reports .. 95
(b) Descriptive studies .. 95
(i) Sex distribution ... 95
(ii) Age distribution .. 95
(iii) Anatomical distribution .. 96
(iv) Ethnic origin .. 96
(v) Geographical variation ... 96
(vi) Migration ... 99
(vii) Socioeconomic status and occupation 99
CONTENTS

(c) Case-control studies .. 100
 (i) Australia .. 100
 (ii) Europe .. 102
 (iii) North America .. 106

(d) Collation of results ... 113
 (i) Total sun exposure: potential exposure by place of residence 113
 (ii) Biological response to total sun exposure 113
 (iii) Total sun exposure assessed by questionnaire 115
 (iv) Short periods of residence implying high potential exposure 115
 (v) Occupational exposure ... 115
 (vi) Intermittent exposure .. 115
 (vii) Sunburn .. 115

2.1.4 Malignant melanoma of the eye 122
 (a) Case reports .. 122
 (b) Descriptive studies .. 125
 (i) Ethnic origin .. 125
 (ii) Place of birth and residence 125
 (iii) Occupation .. 127
 (iv) History of skin cancer ... 127

(c) Case-control studies .. 127

2.1.5 Other cancers ... 130

2.2 Artificial sources of ultraviolet radiation 130
 2.2.1 Nonmelanocytic skin cancer 130
 2.2.2 Malignant melanoma of the skin 130
 2.2.3 Malignant melanoma of the eye 134

2.3 Premalignant conditions ... 134
 2.3.1 Basal-cell naevus syndrome 134
 2.3.2 Dysplastic naevus syndrome 134

2.4 Molecular genetics of human skin cancers 135
 2.4.1 ras Gene mutations ... 135
 2.4.2 p53 Gene mutations ... 135

3. Studies of cancer in animals ... 139
 3.1 Experimental conventions ... 139
 3.1.1 Species studied .. 139
 3.1.2 Wavelength ranges ... 139
 3.1.3 Measured doses .. 140
 3.1.4 Protocols ... 140
 3.2 Broad-spectrum radiation ... 141
 3.2.1 Sunlight .. 141
 3.2.2 Solar-simulated radiation 142
 3.2.3 Sources emitting UVC, UVB and UVA radiation 142
 3.3 Sources emitting mainly UVB radiation 144
 3.3.1 Mouse ... 144
CONTENTS

3.3.2 Rat .. 146
3.3.3 Hamster.. 146
3.3.4 Guinea-pig .. 146
3.3.5 Fish ... 146
3.3.6 Opossum ... 146

3.4 Sources emitting mainly UVC radiation .. 147
3.4.1 Mouse ... 147
3.4.2 Rat.. 148

3.5 Sources emitting mainly UVA radiation .. 148

3.6 Interaction of wavelengths .. 150
3.6.1 Interaction of exposures given on the same day 150
3.6.2 Long-term interactions 151

3.7 Additional experimental observations 151
3.7.1 Tumour types ... 151
3.7.2 Dose and effect .. 153
3.7.3 Dose delivery ... 154
3.7.4 Action spectra ... 154
3.7.5 Pigmentation.. 155

3.8 Administration with known chemical carcinogens 155
3.8.1 Administration with polycyclic aromatic hydrocarbons 156
 (a) 3,4-Benz[a]pyrene .. 156
 (b) 7,12-Dimethylbenz[a]anthracene 156
3.8.2 Administration with other agents with promoting activity 157
 (a) Croton oil .. 157
 (b) 12-O-Tetradecanoylphorbol 13-acetate 158
 (c) Benzoyl peroxide ... 158
 (d) Methyl ethyl ketone peroxide 159

3.9 Interaction with immunosuppressive agents 160

3.10 Molecular genetics of animal skin tumours induced by ultraviolet radiation 161

4. Other relevant data .. 163
4.1 Transmission and absorption in biological tissues 163
4.1.1 Epidermis .. 163
 (a) Humans .. 163
 (b) Experimental systems 164
 (c) Epidermal chromophores 165
 (d) Enhancement of epidermal penetration of ultraviolet radiation 166
4.1.2 Eye .. 166
 (a) Humans .. 166
 (b) Experimental systems 166

4.2 Adverse effects (other than cancer) 167
4.2.1 Epidermis .. 167
 (a) Humans .. 167
 (i) Erythema and pigmentation (sunburn and suntanning) 167
CONTENTS

(ii) Pigmented naevi 169
(iii) Ultrastructural changes 170
(iv) Keratosis .. 170
(v) Photosensitivity disorders 172
(b) Experimental systems 172
(c) Comparison of humans and animals 173

4.2.2 Immune response 174
(a) Humans ... 175
(i) Contact hypersensitivity (allergy) 175
(ii) Lymphocytes 176
(iii) Infectious diseases 177
(iv) Photosensitive diseases 177
(b) Experimental systems 177
(i) Contact hypersensitivity 177
(ii) Delayed hypersensitivity to injected antigens 179
(iii) Immunology of ultraviolet-induced skin cancer 180
(iv) Transplantation immunity 180
(v) Infectious diseases 181
(vi) Human lymphocytes in vitro 181
(c) Comparison of humans and animals 182

4.2.3 Eye .. 183
(a) Humans ... 183
(i) Anterior eye (cornea, conjunctiva) 183
(ii) Lens ... 183
(iii) Posterior eye 183
(b) Experimental systems 184
(i) Anterior eye ... 184
(ii) Lens ... 184
(iii) Posterior eye 184
(c) Comparison of humans and animals 184

4.3 Photoproduct formation 185

4.3.1 DNA photoproducts 185
(a) Cyclobutane-type pyrimidine dimers 185
(b) Pyrimidine–pyrimidone (6-4) photoproducts 186
(c) Thymine glycols 187
(d) Cytosine damage 188
(e) Purine damage 188
(f) DNA strand breaks 188
(g) DNA–protein cross-links 189

4.3.2 Other chromophores and targets 189
(a) Chromophores 189
(b) Membranes ... 190
CONTENTS

4.4 Human excision repair disorders 191
4.4.1 Xeroderma pigmentosum .. 191
4.4.2 Trichothiodystrophy .. 192
4.4.3 Cockayne's syndrome ... 193
4.4.4 Role of immunosuppression 193
4.5 Genetic and related effects 194
4.5.1 Humans .. 194
 (a) Epidermis ... 195
 (i) Broad-spectrum ultraviolet radiation, including solar simulation 195
 (ii) UVA radiation 196
 (iii) UVB radiation 196
 (iv) UVC radiation 197
 (b) Lymphocytes .. 198
 (i) Broad-spectrum ultraviolet radiation 198
 (ii) UVA radiation 199
 (iii) UVB radiation 199
4.5.2 Experimental systems 199
 (a) DNA damage .. 199
 (b) Mutagenicity .. 200
 (c) Chromosomal effects 202
 (d) Transformation .. 203
 (e) Effects of cellular and viral gene expression 204

5. Summary of data reported and evaluation 217
5.1 Exposure data .. 217
5.2 Human carcinogenicity data 218
 5.2.1 Solar radiation 218
 (a) Nonmelanocytic skin cancer 218
 (b) Cancer of the lip 219
 (c) Malignant melanoma of the skin 219
 (d) Melanoma of the eye 220
 (e) Other cancers 220
 5.2.2 Artificial sources of ultraviolet radiation 220
 5.2.3 Molecular genetics of human skin cancers 221
5.3 Carcinogenicity in experimental animals 221
5.4 Other relevant data .. 222
 5.4.1 Transmission and absorption 222
 5.4.2 Effects on the skin 222
 5.4.3 Effects on the immune response 222
 5.4.4 DNA photoproducts 223
 5.4.5 Genetic and related effects 223
5.5 Evaluation ... 227

6. References .. 229
CONTENTS

SUMMARY OF FINAL EVALUATIONS .. 281
GLOSSARY OF TERMS .. 283
Appendix 1. Topical sunscreens ... 285
1. General ... 285
2. Protective effects ... 286
 2.1 Against DNA damage ... 286
 2.2 Against acute and chronic actinic damage ... 286
 2.3 Against immunological alterations ... 286
 2.4 Against tumour formation ... 286
3. Adverse effects ... 287
 3.1 Acute toxicity .. 287
 3.2 Chronic toxicity .. 287
 3.3 Reduced vitamin D synthesis .. 287
4. References .. 288

CUMULATIVE INDEX TO THE MONOGRAPHS SERIES 291
NOTE TO THE READER

The term 'carcinogenic risk' in the IARC Monographs series is taken to mean the probability that exposure to an agent will lead to cancer in humans.

Inclusion of an agent in the Monographs does not imply that it is a carcinogen, only that the published data have been examined. Equally, the fact that an agent has not yet been evaluated in a monograph does not mean that it is not carcinogenic.

The evaluations of carcinogenic risk are made by international working groups of independent scientists and are qualitative in nature. No recommendation is given for regulation or legislation.

Anyone who is aware of published data that may alter the evaluation of the carcinogenic risk of an agent to humans is encouraged to make this information available to the Unit of Carcinogen Identification and Evaluation, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France, in order that the agent may be considered for re-evaluation by a future Working Group.

Although every effort is made to prepare the monographs as accurately as possible, mistakes may occur. Readers are requested to communicate any errors to the Unit of Carcinogen Identification and Evaluation, so that corrections can be reported in future volumes.
IARC WORKING GROUP ON THE EVALUATION
OF CARCINOGENIC RISKS TO HUMANS
VOLUME 55: SOLAR AND ULTRAVIOLET RADIATION

Lyon, 11–18 February 1992

LIST OF PARTICIPANTS

Members¹

C. Arlett, MRC Cell Mutation Unit, University of Brighton, Falmer, Brighton BN1 9RR, United Kingdom
B. Bridges, MRC Cell Mutation Unit, University of Brighton, Falmer, Brighton BN1 9RR, United Kingdom (Chairman)
A. Brøgger, Department of Genetics, Institute for Cancer Research, Montebello, 0310 Oslo 3, Norway
B.L. Diffey, Regional Medical Physics Department, Dryburn Hospital, Durham DH1 5TW, United Kingdom
J.M. Elwood, Hugh Adam Cancer Epidemiology Unit, University of Otago Medical School, PO Box 913, Dunedin, New Zealand
E.A. Emmett, Worksafe Australia, National Occupational Health and Safety Commission, 92 Parramatta Road, Camperdown, NSW 2050, Australia
D. English, NHMRC Research Unit, The Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia
P.D. Forbes, Temple University, Biohazards Control Office, Environmental Health and Safety Offices, 3307 North Broad Street, Philadelphia, PA 19140, USA
R.P. Gallagher, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V52 4E6, Canada
J.W. Grisham, Department of Pathology, University of North Carolina, Brinkhous-Bullitt Building CB# 7525, Chapel Hill, NC 27599, USA

¹Unable to attend: J. Marshall, Department of Ophthalmology, Block 8, UNDS, St Thomas's Hospital, London SE1 7EH, United Kingdom
K. Kraemer, National Cancer Institute, Division of Cancer Etiology, Laboratory of Molecular Carcinogenesis, Building 37, Room 3D-06, Bethesda, MD 20892, USA

J.C. van der Leun, Institute of Dermatology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

T. Mack, University of Southern California, School of Medicine, Department of Preventive Medicine, Parkview Medical Building, 1420 San Pablo Street, Los Angeles, CA 90033-9987, USA (Vice-Chairman)

W.L. Morison, Johns Hopkins University, Baltimore, MD 21205, USA

S. Olin, ILSI Risk Science Institute, 1126 Sixteenth Street NW, Washington DC 20036, USA

A. Østerlind, Danish Cancer Registry, Rosenvaengets Hovedvej 35, Box 839, 2100 Copenhagen, Denmark

D.H. Sliney, Laser Branch, US Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD 21010-5422, USA

F. Stenbäck, Department of Pathology, University of Oulu, Kajaanintie 52 D, 90220 Oulu 22, Finland

R.M. Tyrrell, Swiss Institute for Experimental Cancer Research, 1066 Epalinges-sur-Lausanne, Switzerland

A.R. Young, Photobiology Department, St John’s Institute of Dermatology, St Thomas’s Hospital, London SE1 7EH, United Kingdom

Representative of the US Food and Drug Administration

J.Z. Beer, US Food and Drug Administration, Center for Devices and Radiological Health, 12709 Twinbrook Parkway, Rockville, MD 20852, USA

Observers

R.C. Burton, Department of Surgery, John Hunter Hospital, Locked Bag #1, Newcastle Mail Centre, Newcastle, NSW 2310, Australia

C.J. Portier, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA

Secretariat

B. Armstrong, Deputy Director
H. Bartsch, Unit of Environmental and Host Factors
P. Boffetta, Unit of Analytical Epidemiology
J.R.P. Cabral, Unit of Mechanisms of Carcinogenesis
E. Cardis, Director’s Office
M. Friesen, Unit of Environmental and Host Factors
M.-J. Ghess, Unit of Carcinogen Identification and Evaluation
J. Hall, Unit of Mechanisms of Carcinogenesis
E. Heseltine, Lajarte, St Léon-sur-Vézère, France
A. Kricker, Unit of Descriptive Epidemiology
PARTICIPANTS

V. Krutovskikh, Unit of Multistage Carcinogenesis
D. McGregor, Unit of Carcinogen Identification and Evaluation
D. Mietton, Unit of Carcinogen Identification and Evaluation
H. Møller, Unit of Carcinogen Identification and Evaluation
R. Montesano, Unit of Mechanisms of Carcinogenesis
T. Nakazawa, Unit of Multistage Carcinogenesis
I. O'Neill, Unit of Environmental and Host Factors
M. Parkin, Unit of Descriptive Epidemiology
C. Partensky, Unit of Carcinogen Identification and Evaluation
I. Peterschmitt, Unit of Carcinogen Identification and Evaluation, Geneva, Switzerland
D. Shuker, Unit of Environmental and Host Factors
L. Tomatis, Director
H. Vainio, Unit of Carcinogen Identification and Evaluation
J. Wilbourn, Unit of Carcinogen Identification and Evaluation
H. Yamasaki, Unit of Multistage Carcinogenesis

Secretarial assistance

J. Cazeaux
M. Lézère
S. Reynaud
PREAMBLE
IARC MONOGRAPHS PROGRAMME ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS

PREAMBLE

1. BACKGROUND

In 1969, the International Agency for Research on Cancer (IARC) initiated a programme to evaluate the carcinogenic risk of chemicals to humans and to produce monographs on individual chemicals. The Monographs programme has since been expanded to include consideration of exposures to complex mixtures of chemicals (which occur, for example, in some occupations and as a result of human habits) and of exposures to other agents, such as radiation and viruses. With Supplement 6 (IARC, 1987a), the title of the series was modified from IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans to IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, in order to reflect the widened scope of the programme.

The criteria established in 1971 to evaluate carcinogenic risk to humans were adopted by the working groups whose deliberations resulted in the first 16 volumes of the IARC Monographs series. Those criteria were subsequently updated by further ad-hoc working groups (IARC, 1977, 1978, 1979, 1982, 1983, 1987b, 1988, 1991a; Vainio et al., 1992).

2. OBJECTIVE AND SCOPE

The objective of the programme is to prepare, with the help of international working groups of experts, and to publish in the form of monographs, critical reviews and evaluations of evidence on the carcinogenicity of a wide range of human exposures. The Monographs may also indicate where additional research efforts are needed.

The Monographs represent the first step in carcinogenic risk assessment, which involves examination of all relevant information in order to assess the strength of the available evidence that certain exposures could alter the incidence of cancer in humans. The second step is quantitative risk estimation. Detailed, quantitative evaluations of epidemiological data may be made in the Monographs, but without extrapolation beyond the range of the data.

1This project is supported by PHS Grant No. 2 U01 CA33193–10 awarded by the US National Cancer Institute, Department of Health and Human Services. Since 1986, the programme has also been supported by the Commission of the European Communities.
available. Quantitative extrapolation from experimental data to the human situation is not undertaken.

The term ‘carcinogen’ is used in these monographs to denote an exposure that is capable of increasing the incidence of malignant neoplasms; the induction of benign neoplasms may in some circumstances (see p. 28) contribute to the judgement that the exposure is carcinogenic. The terms ‘neoplasm’ and ‘tumour’ are used interchangeably.

Some epidemiological and experimental studies indicate that different agents may act at different stages in the carcinogenic process, and several different mechanisms may be involved. The aim of the Monographs has been, from their inception, to evaluate evidence of carcinogenicity at any stage in the carcinogenesis process, independently of the underlying mechanisms. Information on mechanisms may, however, be used in making the overall evaluation (IARC, 1991a; Vainio et al., 1992; see also pp. 33–34).

The Monographs may assist national and international authorities in making risk assessments and in formulating decisions concerning any necessary preventive measures. The evaluations of IARC working groups are scientific, qualitative judgements about the evidence for or against carcinogenicity provided by the available data. These evaluations represent only one part of the body of information on which regulatory measures may be based. Other components of regulatory decisions may vary from one situation to another and from country to country, responding to different socioeconomic and national priorities. Therefore, no recommendation is given with regard to regulation or legislation, which are the responsibility of individual governments and/or other international organizations.

The IARC Monographs are recognized as an authoritative source of information on the carcinogenicity of a wide range of human exposures. A users’ survey, made in 1988, indicated that the Monographs are consulted by various agencies in 57 countries. Each volume is generally printed in 4000 copies for distribution to governments, regulatory bodies and interested scientists. The Monographs are also available via the Distribution and Sales Service of the World Health Organization.

3. SELECTION OF TOPICS FOR MONOGRAPHS

Topics are selected on the basis of two main criteria: (a) there is evidence of human exposure, and (b) there is some evidence or suspicion of carcinogenicity. The term ‘agent’ is used to include individual chemical compounds, groups of related chemical compounds, physical agents (such as radiation) and biological factors (such as viruses). Exposures to mixtures of agents may occur in occupational exposures and as a result of personal and cultural habits (like smoking and dietary practices). Chemical analogues and compounds with biological or physical characteristics similar to those of suspected carcinogens may also be considered, even in the absence of data on a possible carcinogenic effect in humans or experimental animals.

As significant new data on subjects on which monographs have already been prepared become available, re-evaluations are made at subsequent meetings, and revised monographs are published.

4. DATA FOR MONOGRAPHS

The Monographs do not necessarily cite all the literature concerning the subject of an evaluation. Only those data considered by the Working Group to be relevant to making the evaluation are included.

With regard to biological and epidemiological data, only reports that have been published or accepted for publication in the openly available scientific literature are reviewed by the working groups. In certain instances, government agency reports that have undergone peer review and are widely available are considered. Exceptions may be made on an ad-hoc basis to include unpublished reports that are in their final form and publicly available, if their inclusion is considered pertinent to making a final evaluation (see pp. 32 et seq.). In the sections on chemical and physical properties, on analysis, on production and use and on occurrence, unpublished sources of information may be used.

5. THE WORKING GROUP

Reviews and evaluations are formulated by a working group of experts. The tasks of the group are: (i) to ascertain that all appropriate data have been collected; (ii) to select the data relevant for the evaluation on the basis of scientific merit; (iii) to prepare accurate summaries of the data to enable the reader to follow the reasoning of the Working Group; (iv) to evaluate the results of experimental and epidemiological studies on cancer; (v) to evaluate data relevant to the understanding of mechanism of action; and (vi) to make an overall evaluation of the carcinogenicity of the exposure to humans.

Working Group participants who contributed to the considerations and evaluations within a particular volume are listed, with their addresses, at the beginning of each publication. Each participant who is a member of a working group serves as an individual scientist and not as a representative of any organization, government or industry. In addition, nominees of national and international agencies and industrial associations may be invited as observers.

6. WORKING PROCEDURES

Approximately one year in advance of a meeting of a working group, the topics of the monographs are announced and participants are selected by IARC staff in consultation with other experts. Subsequently, relevant biological and epidemiological data are collected by IARC from recognized sources of information on carcinogenesis, including data storage and retrieval systems such as BIOSIS, Chemical Abstracts, CANCERLIT, MEDLINE and TOXLINE—including EMIC and ETIC for data on genetic and related effects and teratogenicity, respectively.

For chemicals and some complex mixtures, the major collection of data and the preparation of first drafts of the sections on chemical and physical properties, on analysis, on production and use and on occurrence are carried out under a separate contract funded by
the US National Cancer Institute. Representatives from industrial associations may assist in the preparation of sections on production and use. Information on production and trade is obtained from governmental and trade publications and, in some cases, by direct contact with industries. Separate production data on some agents may not be available because their publication could disclose confidential information. Information on uses may be obtained from published sources but is often complemented by direct contact with manufacturers. Efforts are made to supplement this information with data from other national and international sources.

Six months before the meeting, the material obtained is sent to meeting participants, or is used by IARC staff, to prepare sections for the first drafts of monographs. The first drafts are compiled by IARC staff and sent, prior to the meeting, to all participants of the Working Group for review.

The Working Group meets in Lyon for seven to eight days to discuss and finalize the texts of the monographs and to formulate the evaluations. After the meeting, the master copy of each monograph is verified by consulting the original literature, edited and prepared for publication. The aim is to publish monographs within nine months of the Working Group meeting.

The available studies are summarized by the Working Group, with particular regard to the qualitative aspects discussed below. In general, numerical findings are indicated as they appear in the original report; units are converted when necessary for easier comparison. The Working Group may conduct additional analyses of the published data and use them in their assessment of the evidence; the results of such supplementary analyses are given in square brackets. When an important aspect of a study, directly impinging on its interpretation, should be brought to the attention of the reader, a comment is given in square brackets.

7. EXPOSURE DATA

Sections that indicate the extent of past and present human exposure, the sources of exposure, the people most likely to be exposed and the factors that contribute to the exposure are included at the beginning of each monograph.

Most monographs on individual chemicals, groups of chemicals or complex mixtures include sections on chemical and physical data, on analysis, on production and use and on occurrence. In monographs on, for example, physical agents, biological factors, occupational exposures and cultural habits, other sections may be included, such as: historical perspectives, description of an industry or habit, chemistry of the complex mixture or taxonomy.

For chemical exposures, the Chemical Abstracts Services Registry Number, the latest Chemical Abstracts Primary Name and the IUPAC Systematic Name are recorded; other synonyms are given, but the list is not necessarily comprehensive. For biological agents, taxonomy and structure are described, and the degree of variability is given, when applicable.

Information on chemical and physical properties and, in particular, data relevant to identification, occurrence and biological activity are included. For biological agents, mode of replication, life cycle, target cells, persistence and latency, host response and description of nonmalignant disease caused by them are given. A description of technical products of chemicals includes trades names, relevant specifications and available information on
composition and impurities. Some of the trade names given may be those of mixtures in which the agent being evaluated is only one of the ingredients.

The purpose of the section on analysis is to give the reader an overview of current methods, with emphasis on those widely used for regulatory purposes. Methods for monitoring human exposure are also given, when available. No critical evaluation or recommendation of any of the methods is meant or implied. The IARC publishes a series of volumes, *Environmental Carcinogens: Methods of Analysis and Exposure Measurement* (IARC, 1978–91), that describe validated methods for analysing a wide variety of chemicals and mixtures. For biological agents, methods of detection and exposure assessment are described, including their sensitivity, specificity and reproducibility.

The dates of first synthesis and of first commercial production of a chemical or mixture are provided; for agents which do not occur naturally, this information may allow a reasonable estimate to be made of the date before which no human exposure to the agent could have occurred. The dates of first reported occurrence of an exposure are also provided. In addition, methods of synthesis used in past and present commercial production and different methods of production which may give rise to different impurities are described.

Data on production, international trade and uses are obtained for representative regions, which usually include Europe, Japan and the USA. It should not, however, be inferred that those areas or nations are necessarily the sole or major sources or users of the agent. Some identified uses may not be current or major applications, and the coverage is not necessarily comprehensive. In the case of drugs, mention of their therapeutic uses does not necessarily represent current practice nor does it imply judgement as to their therapeutic efficacy.

Information on the occurrence of an agent or mixture in the environment is obtained from data derived from the monitoring and surveillance of levels in occupational environments, air, water, soil, foods and animal and human tissues. When available, data on the generation, persistence and bioaccumulation of the agent are also included. In the case of mixtures, industries, occupations or processes, information is given about all agents present. For processes, industries and occupations, a historical description is also given, noting variations in chemical composition, physical properties and levels of occupational exposure with time. For biological agents, the epidemiology of infection is described.

Statements concerning regulations and guidelines (e.g., pesticide registrations, maximal levels permitted in foods, occupational exposure limits) are included for some countries as indications of potential exposures, but they may not reflect the most recent situation, since such limits are continuously reviewed and modified. The absence of information on regulatory status for a country should not be taken to imply that that country does not have regulations with regard to the exposure. For biological agents, legislation and control, including vaccines and therapy, are described.

8. EVIDENCE FOR CARCINOGENICITY IN HUMANS

(a) Types of studies considered

Three types of epidemiological studies of cancer contribute to the assessment of carcinogenicity in humans—cohort studies, case–control studies and correlation studies. Rarely,
results from randomized trials may be available. Case reports of cancer in humans may also be reviewed.

Cohort and case–control studies relate individual exposures under study to the occurrence of cancer in individuals and provide an estimate of relative risk (ratio of incidence in those exposed to incidence in those not exposed) as the main measure of association.

In correlation studies, the units of investigation are usually whole populations (e.g., in particular geographical areas or at particular times), and cancer frequency is related to a summary measure of the exposure of the population to the agent, mixture or exposure circumstance under study. Because individual exposure is not documented, however, a causal relationship is less easy to infer from correlation studies than from cohort and case–control studies. Case reports generally arise from a suspicion, based on clinical experience, that the concurrence of two events—that is, a particular exposure and occurrence of a cancer—has happened rather more frequently than would be expected by chance. Case reports usually lack complete ascertainment of cases in any population, definition or enumeration of the population at risk and estimation of the expected number of cases in the absence of exposure. The uncertainties surrounding interpretation of case reports and correlation studies make them inadequate, except in rare instances, to form the sole basis for inferring a causal relationship. When taken together with case–control and cohort studies, however, relevant case reports or correlation studies may add materially to the judgement that a causal relationship is present.

Epidemiological studies of benign neoplasms, presumed preneoplastic lesions and other end-points thought to be relevant to cancer are also reviewed by working groups. They may, in some instances, strengthen inferences drawn from studies of cancer itself.

(b) Quality of studies considered

The Monographs are not intended to summarize all published studies. Those that are judged to be inadequate or irrelevant to the evaluation are generally omitted. They may be mentioned briefly, particularly when the information is considered to be a useful supplement to that in other reports or when they provide the only data available. Their inclusion does not imply acceptance of the adequacy of the study design or of the analysis and interpretation of the results, and limitations are clearly outlined in square brackets at the end of the study description.

It is necessary to take into account the possible roles of bias, confounding and chance in the interpretation of epidemiological studies. By ‘bias’ is meant the operation of factors in study design or execution that lead erroneously to a stronger or weaker association than in fact exists between disease and an agent, mixture or exposure circumstance. By ‘confounding’ is meant a situation in which the relationship with disease is made to appear stronger or to appear weaker than it truly is as a result of an association between the apparent causal factor and another factor that is associated with either an increase or decrease in the incidence of the disease. In evaluating the extent to which these factors have been minimized in an individual study, working groups consider a number of aspects of design and analysis as described in the report of the study. Most of these considerations apply equally to case–control, cohort and correlation studies. Lack of clarity of any of these aspects in the
reporting of a study can decrease its credibility and the weight given to it in the final evaluation of the exposure.

Firstly, the study population, disease (or diseases) and exposure should have been well defined by the authors. Cases of disease in the study population should have been identified in a way that was independent of the exposure of interest, and exposure should have been assessed in a way that was not related to disease status.

Secondly, the authors should have taken account in the study design and analysis of other variables that can influence the risk of disease and may have been related to the exposure of interest. Potential confounding by such variables should have been dealt with either in the design of the study, such as by matching, or in the analysis, by statistical adjustment. In cohort studies, comparisons with local rates of disease may be more appropriate than those with national rates. Internal comparisons of disease frequency among individuals at different levels of exposure should also have been made in the study.

Thirdly, the authors should have reported the basic data on which the conclusions are founded, even if sophisticated statistical analyses were employed. At the very least, they should have given the numbers of exposed and unexposed cases and controls in a case–control study and the numbers of cases observed and expected in a cohort study. Further tabulations by time since exposure began and other temporal factors are also important. In a cohort study, data on all cancer sites and all causes of death should have been given, to reveal the possibility of reporting bias. In a case–control study, the effects of investigated factors other than the exposure of interest should have been reported.

Finally, the statistical methods used to obtain estimates of relative risk, absolute rates of cancer, confidence intervals and significance tests, and to adjust for confounding should have been clearly stated by the authors. The methods used should preferably have been the generally accepted techniques that have been refined since the mid-1970s. These methods have been reviewed for case–control studies (Breslow & Day, 1980) and for cohort studies (Breslow & Day, 1987).

(c) Inferences about mechanism of action

Detailed analyses of both relative and absolute risks in relation to temporal variables, such as age at first exposure, time since first exposure, duration of exposure, cumulative exposure and time since exposure ceased, are reviewed and summarized when available. The analysis of temporal relationships can be useful in formulating models of carcinogenesis. In particular, such analyses may suggest whether a carcinogen acts early or late in the process of carcinogenesis, although at best they allow only indirect inferences about the mechanism of action. Special attention is given to measurements of biological markers of carcinogen exposure or action, such as DNA or protein adducts, as well as markers of early steps in the carcinogenic process, such as proto-oncogene mutation, when these are incorporated into epidemiological studies focused on cancer incidence or mortality. Such measurements may allow inferences to be made about putative mechanisms of action (IARC, 1991a; Vainio et al., 1992).

(d) Criteria for causality

After the quality of individual epidemiological studies of cancer has been summarized and assessed, a judgement is made concerning the strength of evidence that the agent,
mixture or exposure circumstance in question is carcinogenic for humans. In making their judgement, the Working Group considers several criteria for causality. A strong association (i.e., a large relative risk) is more likely to indicate causality than a weak association, although it is recognized that relative risks of small magnitude do not imply lack of causality and may be important if the disease is common. Associations that are replicated in several studies of the same design or using different epidemiological approaches or under different circumstances of exposure are more likely to represent a causal relationship than isolated observations from single studies. If there are inconsistent results among investigations, possible reasons are sought (such as differences in amount of exposure), and results of studies judged to be of high quality are given more weight than those from studies judged to be methodologically less sound. When suspicion of carcinogenicity arises largely from a single study, these data are not combined with those from later studies in any subsequent reassessment of the strength of the evidence.

If the risk of the disease in question increases with the amount of exposure, this is considered to be a strong indication of causality, although absence of a graded response is not necessarily evidence against a causal relationship. Demonstration of a decline in risk after cessation of or reduction in exposure in individuals or in whole populations also supports a causal interpretation of the findings.

Although a carcinogen may act upon more than one target, the specificity of an association (i.e., an increased occurrence of cancer at one anatomical site or of one morphological type) adds plausibility to a causal relationship, particularly when excess cancer occurrence is limited to one morphological type within the same organ.

Although rarely available, results from randomized trials showing different rates among exposed and unexposed individuals provide particularly strong evidence for causality.

When several epidemiological studies show little or no indication of an association between an exposure and cancer, the judgement may be made that, in the aggregate, they show evidence of lack of carcinogenicity. Such a judgement requires first of all that the studies giving rise to it meet, to a sufficient degree, the standards of design and analysis described above. Specifically, the possibility that bias, confounding or misclassification of exposure or outcome could explain the observed results should be considered and excluded with reasonable certainty. In addition, all studies that are judged to be methodologically sound should be consistent with a relative risk of unity for any observed level of exposure and, when considered together, should provide a pooled estimate of relative risk which is at or near unity and has a narrow confidence interval, due to sufficient population size. Moreover, no individual study nor the pooled results of all the studies should show any consistent tendency for relative risk of cancer to increase with increasing level of exposure. It is important to note that evidence of lack of carcinogenicity obtained in this way from several epidemiological studies can apply only to the type(s) of cancer studied and to dose levels and intervals between first exposure and observation of disease that are the same as or less than those observed in all the studies. Experience with human cancer indicates that, in some cases, the period from first exposure to the development of clinical cancer is seldom less than 20 years; latent periods substantially shorter than 30 years cannot provide evidence for lack of carcinogenicity.
9. STUDIES OF CANCER IN EXPERIMENTAL ANIMALS

For several agents (e.g., aflatoxins, 4-aminobiphenyl, bis(chloromethyl)ether, diethylstilboestrol, melphalan, 8-methoxypsoralen (methoxsalen) plus ultraviolet radiation, mustard gas and vinyl chloride), evidence of carcinogenicity in experimental animals preceded evidence obtained from epidemiological studies or case reports. Information compiled from the first 41 volumes of the IARC Monographs (Wilbourn et al., 1986) shows that, of the 44 agents and mixtures for which there is sufficient or limited evidence of carcinogenicity to humans (see p. 32), all 37 that have been tested adequately produce cancer in at least one animal species. Although this association cannot establish that all agents and mixtures that cause cancer in experimental animals also cause cancer in humans, nevertheless, in the absence of adequate data on humans, it is biologically plausible and prudent to regard agents and mixtures for which there is sufficient evidence (see p. 33) of carcinogenicity in experimental animals as if they presented a carcinogenic risk to humans. The possibility that a given agent may cause cancer through a species-specific mechanism which does not operate in humans (see p. 34) should also be taken into consideration.

The nature and extent of impurities or contaminants present in the chemical or mixture being evaluated are given when available. Animal strain, sex, numbers per group, age at start of treatment and survival are reported.

Other types of studies summarized include: experiments in which the agent or mixture was administered in conjunction with known carcinogens or factors that modify carcinogenic effects; studies in which the end-point was not cancer but a defined precancerous lesion; and experiments on the carcinogenicity of known metabolites and derivatives.

For experimental studies of mixtures, consideration is given to the possibility of changes in the physicochemical properties of the test substance during collection, storage, extraction, concentration and delivery. Chemical and toxicological interactions of the components of mixtures may result in nonlinear dose–response relationships.

An assessment is made as to the relevance to human exposure of samples tested in experimental systems, which may involve consideration of: (i) physical and chemical characteristics, (ii) constituent substances that indicate the presence of a class of substances, (iii) the results of tests for genetic and related effects, including genetic activity profiles, DNA adduct profiles, proto-oncogene mutation and expression and suppressor gene inactivation. The relevance of results obtained with viral strains analogous to that being evaluated in the monograph must also be considered.

(a) Qualitative aspects

An assessment of carcinogenicity involves several considerations of qualitative importance, including (i) the experimental conditions under which the test was performed, including route and schedule of exposure, species, strain, sex, age, duration of follow-up; (ii) the consistency of the results, for example, across species and target organ(s); (iii) the spectrum of neoplastic response, from preneoplastic lesions and benign tumours to malignant neoplasms; and (iv) the possible role of modifying factors.

As mentioned earlier (p. 21), the Monographs are not intended to summarize all published studies. Those studies in experimental animals that are inadequate (e.g., too short a duration, too few animals, poor survival; see below) or are judged irrelevant to the
evaluation are generally omitted. Guidelines for conducting adequate long-term carcinogenicity experiments have been outlined (e.g., Montesano et al., 1986).

Considerations of importance to the Working Group in the interpretation and evaluation of a particular study include: (i) how clearly the agent was defined and, in the case of mixtures, how adequately the sample characterization was reported; (ii) whether the dose was adequately monitored, particularly in inhalation experiments; (iii) whether the doses and duration of treatment were appropriate and whether the survival of treated animals was similar to that of controls; (iv) whether there were adequate numbers of animals per group; (v) whether animals of both sexes were used; (vi) whether animals were allocated randomly to groups; (vii) whether the duration of observation was adequate; and (viii) whether the data were adequately reported. If available, recent data on the incidence of specific tumours in historical controls, as well as in concurrent controls, should be taken into account in the evaluation of tumour response.

When benign tumours occur together with and originate from the same cell type in an organ or tissue as malignant tumours in a particular study and appear to represent a stage in the progression to malignancy, it may be valid to combine them in assessing tumour incidence (Huff et al., 1989). The occurrence of lesions presumed to be preneoplastic may in certain instances aid in assessing the biological plausibility of any neoplastic response observed. If an agent or mixture induces only benign neoplasms that appear to be end-points that do not readily undergo transition to malignancy, it should nevertheless be suspected of being a carcinogen and it requires further investigation.

(b) Quantitative aspects

The probability that tumours will occur may depend on the species, sex, strain and age of the animal, the dose of the carcinogen and the route and length of exposure. Evidence of an increased incidence of neoplasms with increased level of exposure strengthens the inference of a causal association between the exposure and the development of neoplasms.

The form of the dose–response relationship can vary widely, depending on the particular agent under study and the target organ. Since many chemicals require metabolic activation before being converted into their reactive intermediates, both metabolic and pharmacokinetic aspects are important in determining the dose–response pattern. Saturation of steps such as absorption, activation, inactivation and elimination may produce nonlinearity in the dose–response relationship, as could saturation of processes such as DNA repair (Hoel et al., 1983; Gart et al., 1986).

(c) Statistical analysis of long-term experiments in animals

Factors considered by the Working Group include the adequacy of the information given for each treatment group: (i) the number of animals studied and the number examined histologically, (ii) the number of animals with a given tumour type and (iii) length of survival. The statistical methods used should be clearly stated and should be the generally accepted techniques refined for this purpose (Peto et al., 1980; Gart et al., 1986). When there is no difference in survival between control and treatment groups, the Working Group usually compares the proportions of animals developing each tumour type in each of the groups. Otherwise, consideration is given as to whether or not appropriate adjustments have been
made for differences in survival. These adjustments can include: comparisons of the proportions of tumour-bearing animals among the effective number of animals (alive at the time the first tumour is discovered), in the case where most differences in survival occur before tumours appear; life-table methods, when tumours are visible or when they may be considered 'fatal' because mortality rapidly follows tumour development; and the Mantel-Haenszel test or logistic regression, when occult tumours do not affect the animals' risk of dying but are 'incidental' findings at autopsy.

In practice, classifying tumours as fatal or incidental may be difficult. Several survival-adjusted methods have been developed that do not require this distinction (Gart et al., 1986), although they have not been fully evaluated.

10. OTHER RELEVANT DATA

(a) Absorption, distribution, metabolism and excretion

Concise information is given on absorption, distribution (including placental transfer) and excretion in both humans and experimental animals. Kinetic factors that may affect the dose–response relationship, such as saturation of uptake, protein binding, metabolic activation, detoxification and DNA repair processes, are mentioned. Studies that indicate the metabolic fate of the agent in humans and in experimental animals are summarized briefly, and comparisons of data from humans and animals are made when possible. Comparative information on the relationship between exposure and the dose that reaches the target site may be of particular importance for extrapolation between species.

(b) Toxic effects

Data are given on acute and chronic toxic effects (other than cancer), such as organ toxicity, increased cell proliferation, immunotoxicity and endocrine effects. The presence and toxicological significance of cellular receptors is described.

(c) Reproductive and developmental effects

Effects on reproduction, teratogenicity, fetotoxicity and embryotoxicity are also summarized briefly.

(d) Genetic and related effects

Tests of genetic and related effects are described in view of the relevance of gene mutation and chromosomal damage to carcinogenesis (Vainio et al., 1992).

The adequacy of the reporting of sample characterization is considered and, where necessary, commented upon; with regard to complex mixtures, such comments are similar to those described for animal carcinogenicity tests on p. 28. The available data are interpreted critically by phylogenetic group according to the end-points detected, which may include DNA damage, gene mutation, sister chromatid exchange, micronucleus formation, chromosomal aberrations, aneuploidy and cell information. The concentrations employed are given, and mention is made of whether use of an exogenous metabolic system affected the test result. These data are given as listings of test systems, data and references; bar graphs (activity profiles) and corresponding summary tables with detailed information on the preparation of the profiles (Waters et al., 1987) are given in appendices.
Positive results in tests using prokaryotes, lower eukaryotes, plants, insects and cultured mammalian cells suggest that genetic and related effects could occur in mammals. Results from such tests may also give information about the types of genetic effect produced and about the involvement of metabolic activation. Some end-points described are clearly genetic in nature (e.g., gene mutations and chromosomal aberrations), while others are to a greater or lesser degree associated with genetic effects (e.g., unscheduled DNA synthesis). In-vitro tests for tumour-promoting activity and for cell transformation may be sensitive to changes that are not necessarily the result of genetic alterations but that may have specific relevance to the process of carcinogenesis. A critical appraisal of these tests has been published (Montesano et al., 1986).

Genetic or other activity manifest in experimental mammals and humans is regarded as being of greater relevance than that in other organisms. The demonstration that an agent or mixture can induce gene and chromosomal mutations in whole mammals indicates that it may have carcinogenic activity, although this activity may not be detectably expressed in any or all species. Relative potency in tests for mutagenicity and related effects is not a reliable indicator of carcinogenic potency. Negative results in tests for mutagenicity in selected tissues from animals treated in vivo provide less weight, partly because they do not exclude the possibility of an effect in tissues other than those examined. Moreover, negative results in short-term tests with genetic end-points cannot be considered to provide evidence to rule out carcinogenicity of agents or mixtures that act through other mechanisms (e.g., receptor-mediated effects, cellular toxicity with regenerative proliferation, peroxisome proliferation) (Vainio et al., 1992). Factors that may lead to misleading results in short-term tests have been discussed in detail elsewhere (Montesano et al., 1986).

When available, data relevant to mechanisms of carcinogenesis that do not involve structural changes at the level of the gene are also described.

The adequacy of epidemiological studies of reproductive outcome and genetic and related effects in humans is evaluated by the same criteria as are applied to epidemiological studies of cancer.

(e) Structure–activity considerations

This section describes structure–activity relationships that may be relevant to an evaluation of the carcinogenicity of an agent.

11. SUMMARY OF DATA REPORTED

In this section, the relevant epidemiological and experimental data are summarized. Only reports, other than in abstract form, that meet the criteria outlined on p. 21 are considered for evaluating carcinogenicity. Inadequate studies are generally not summarized: such studies are usually identified by a square-bracketed comment in the preceding text.

(a) Exposures

Human exposure is summarized on the basis of elements such as production, use, occurrence in the environment and determinations in human tissues and body fluids. Quantitative data are given when available.
PREAMBLE

(b) Carcinogenicity in humans
Results of epidemiological studies that are considered to be pertinent to an assessment of human carcinogenicity are summarized. When relevant, case reports and correlation studies are also summarized.

(c) Carcinogenicity in experimental animals
Data relevant to an evaluation of carcinogenicity in animals are summarized. For each animal species and route of administration, it is stated whether an increased incidence of neoplasms or preneoplastic lesions was observed, and the tumour sites are indicated. If the agent or mixture produced tumours after prenatal exposure or in single-dose experiments, this is also indicated. Negative findings are also summarized. Dose–response and other quantitative data may be given when available.

(d) Other data relevant to an evaluation of carcinogenicity and its mechanisms
Data on biological effects in humans that are of particular relevance are summarized. These may include toxicological, kinetic and metabolic considerations and evidence of DNA binding, persistence of DNA lesions or genetic damage in exposed humans. Toxicological information, such as that on cytotoxicity and regeneration, receptor binding and hormonal and immunological effects, and data on kinetics and metabolism in experimental animals are given when considered relevant to the possible mechanism of the carcinogenic action of the agent. The results of tests for genetic and related effects are summarized for whole mammals, cultured mammalian cells and nonmammalian systems.

When available, comparisons of such data for humans and for animals, and particularly animals that have developed cancer, are described.

Structure–activity relationships are mentioned when relevant.

For the agent, mixture or exposure circumstance being evaluated, the available data on end-points or other phenomena relevant to mechanisms of carcinogenesis from studies in humans, experimental animals and tissue and cell test systems are summarized within one or more of the following descriptive dimensions:

(i) Evidence of genotoxicity (i.e., structural changes at the level of the gene): for example, structure–activity considerations, adduct formation, mutagenicity (effect on specific genes), chromosomal mutation/aneuploidy

(ii) Evidence of effects on the expression of relevant genes (i.e., functional changes at the intracellular level): for example, alterations to the structure or quantity of the product of a proto-oncogene or tumour suppressor gene, alterations to metabolic activation/inactivation/DNA repair

(iii) Evidence of relevant effects on cell behaviour (i.e., morphological or behavioural changes at the cellular or tissue level): for example, induction of mitogenesis, compensatory cell proliferation, preneoplasia and hyperplasia, survival of premalignant or malignant cells (immortalization, immunosuppression), effects on metastatic potential

(iv) Evidence from dose and time relationships of carcinogenic effects and interactions between agents: for example, early/late stage, as inferred from epidemiological studies; initiation/promotion/progression/malignant conversion, as defined in animal carcinogenicity experiments; toxicokinetics
These dimensions are not mutually exclusive, and an agent may fall within more than one of them. Thus, for example, the action of an agent on the expression of relevant genes could be summarized under both the first and second dimension, even if it were known with reasonable certainty that those effects resulted from genotoxicity.

12. EVALUATION

Evaluations of the strength of the evidence for carcinogenicity arising from human and experimental animal data are made, using standard terms.

It is recognized that the criteria for these evaluations, described below, cannot encompass all of the factors that may be relevant to an evaluation of carcinogenicity. In considering all of the relevant data, the Working Group may assign the agent, mixture or exposure circumstance to a higher or lower category than a strict interpretation of these criteria would indicate.

(a) Degrees of evidence for carcinogenicity in humans and in experimental animals and supporting evidence

These categories refer only to the strength of the evidence that an exposure is carcinogenic and not to the extent of its carcinogenic activity (potency) nor to the mechanisms involved. A classification may change as new information becomes available.

An evaluation of degree of evidence, whether for a single agent or a mixture, is limited to the materials tested, as defined physically, chemically or biologically. When the agents evaluated are considered by the Working Group to be sufficiently closely related, they may be grouped together for the purpose of a single evaluation of degree of evidence.

(i) Carcinogenicity in humans

The applicability of an evaluation of the carcinogenicity of a mixture, process, occupation or industry on the basis of evidence from epidemiological studies depends on the variability over time and place of the mixtures, processes, occupations and industries. The Working Group seeks to identify the specific exposure, process or activity which is considered most likely to be responsible for any excess risk. The evaluation is focused as narrowly as the available data on exposure and other aspects permit.

The evidence relevant to carcinogenicity from studies in humans is classified into one of the following categories:

Sufficient evidence of carcinogenicity: The Working Group considers that a causal relationship has been established between exposure to the agent, mixture or exposure circumstance and human cancer. That is, a positive relationship has been observed between the exposure and cancer in studies in which chance, bias and confounding could be ruled out with reasonable confidence.

Limited evidence of carcinogenicity: A positive association has been observed between exposure to the agent, mixture or exposure circumstance and cancer for which a causal interpretation is considered by the Working Group to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence.
PREAMBLE

Inadequate evidence of carcinogenicity: The available studies are of insufficient quality, consistency or statistical power to permit a conclusion regarding the presence or absence of a causal association, or no data on cancer in humans are available.

Evidence suggesting lack of carcinogenicity: There are several adequate studies covering the full range of levels of exposure that human beings are known to encounter, which are mutually consistent in not showing a positive association between exposure to the agent, mixture or exposure circumstance and any studied cancer at any observed level of exposure. A conclusion of 'evidence suggesting lack of carcinogenicity' is inevitably limited to the cancer sites, conditions and levels of exposure and length of observation covered by the available studies. In addition, the possibility of a very small risk at the levels of exposure studied can never be excluded.

In some instances, the above categories may be used to classify the degree of evidence related to carcinogenicity in specific organs or tissues.

(ii) Carcinogenicity in experimental animals

The evidence relevant to carcinogenicity in experimental animals is classified into one of the following categories:

Sufficient evidence of carcinogenicity: The Working Group considers that a causal relationship has been established between the agent or mixture and an increased incidence of malignant neoplasms or of an appropriate combination of benign and malignant neoplasms in (a) two or more species of animals or (b) in two or more independent studies in one species carried out at different times or in different laboratories or under different protocols.

Exceptionally, a single study in one species might be considered to provide sufficient evidence of carcinogenicity when malignant neoplasms occur to an unusual degree with regard to incidence, site, type of tumour or age at onset.

Limited evidence of carcinogenicity: The data suggest a carcinogenic effect but are limited for making a definitive evaluation because, e.g., (a) the evidence of carcinogenicity is restricted to a single experiment; or (b) there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the study; or (c) the agent or mixture increases the incidence only of benign neoplasms or lesions of uncertain neoplastic potential, or of certain neoplasms which may occur spontaneously in high incidences in certain strains.

Inadequate evidence of carcinogenicity: The studies cannot be interpreted as showing either the presence or absence of a carcinogenic effect because of major qualitative or quantitative limitations, or no data on cancer in experimental animals are available.

Evidence suggesting lack of carcinogenicity: Adequate studies involving at least two species are available which show that, within the limits of the tests used, the agent or mixture is not carcinogenic. A conclusion of evidence suggesting lack of carcinogenicity is inevitably limited to the species, tumour sites and levels of exposure studied.

(b) Other data relevant to an evaluation of carcinogenicity

Other evidence judged to be relevant to an evaluation of carcinogenicity and of sufficient importance to affect the overall evaluation is then described. This may include data on preneoplastic lesions, tumour pathology, genetic and related effects, structure–activity relationships, metabolism and pharmacokinetics, and physicochemical parameters.
Data relevant to mechanisms of the carcinogenic action are also evaluated. The strength of the evidence that any carcinogenic effect observed is due to a particular mechanism is assessed, using terms such as weak, moderate or strong. Then, the Working Group assesses if that particular mechanism is likely to be operative in humans. The strongest indications that a particular mechanism operates in humans come from data on humans or biological specimens obtained from exposed humans. The data may be considered to be especially relevant if they show that the agent in question has caused changes in exposed humans that are on the causal pathway to carcinogenesis. Such data may, however, never become available, because it is at least conceivable that certain compounds may be kept from human use solely on the basis of evidence of their toxicity and/or carcinogenicity in experimental systems.

For complex exposures, including occupational and industrial exposures, chemical composition and the potential contribution of carcinogens known to be present are considered by the Working Group in its overall evaluation of human carcinogenicity. The Working Group also determines the extent to which the materials tested in experimental systems are related to those to which humans are exposed.

(c) Overall evaluation

Finally, the body of evidence is considered as a whole, in order to reach an overall evaluation of the carcinogenicity to humans of an agent, mixture or circumstance of exposure.

An evaluation may be made for a group of chemical compounds that have been evaluated by the Working Group. In addition, when supporting data indicate that other, related compounds for which there is no direct evidence of capacity to induce cancer in humans or in animals may also be carcinogenic, a statement describing the rationale for this conclusion is added to the evaluation narrative; an additional evaluation may be made for this broader group of compounds if the strength of the evidence warrants it.

The agent, mixture or exposure circumstance is described according to the wording of one of the following categories, and the designated group is given. The categorization of an agent, mixture or exposure circumstance is a matter of scientific judgement, reflecting the strength of the evidence derived from studies in humans and in experimental animals and from other relevant data.

Group 1—The agent (mixture) is carcinogenic to humans.
The exposure circumstance entails exposures that are carcinogenic to humans.

This category is used when there is sufficient evidence of carcinogenicity in humans. Exceptionally, an agent (mixture) may be placed in this category when evidence in humans is less than sufficient but there is sufficient evidence of carcinogenicity in experimental animals and strong evidence in exposed humans that the agent (mixture) acts through a relevant mechanism of carcinogenicity.

Group 2

This category includes agents, mixtures and exposure circumstances for which, at one extreme, the degree of evidence of carcinogenicity in humans is almost sufficient, as well as those for which, at the other extreme, there are no human data but for which there is evidence of carcinogenicity in experimental animals. Agents, mixtures and exposure circumstances are
assigned to either group 2A (probably carcinogenic to humans) or group 2B (possibly carcinogenic to humans) on the basis of epidemiological and experimental evidence of carcinogenicity and other relevant data.

Group 2A—The agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans.

This category is used when there is limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some cases, an agent (mixture) may be classified in this category when there is inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals and strong evidence that the carcinogenesis is mediated by a mechanism that also operates in humans. Exceptionally, an agent, mixture or exposure circumstance may be classified in this category solely on the basis of limited evidence of carcinogenicity in humans.

Group 2B—The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans.

This category is used for agents, mixtures and exposure circumstances for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals. In some instances, an agent, mixture or exposure circumstance for which there is inadequate evidence of carcinogenicity in humans but limited evidence of carcinogenicity in experimental animals together with supporting evidence from other relevant data may be placed in this group.

Group 3—The agent (mixture or exposure circumstance) is not classifiable as to its carcinogenicity to humans.

This category is used most commonly for agents, mixtures and exposure circumstances for which the evidence of carcinogenicity is inadequate in humans and inadequate or limited in experimental animals.

Exceptionally, agents (mixtures) for which the evidence of carcinogenicity is inadequate in humans but sufficient in experimental animals may be placed in this category when there is strong evidence that the mechanism of carcinogenicity in experimental animals does not operate in humans.

Agents, mixtures and exposure circumstances that do not fall into any other group are also placed in this category.

Group 4—The agent (mixture) is probably not carcinogenic to humans.

This category is used for agents or mixtures for which there is evidence suggesting lack of carcinogenicity in humans and in experimental animals. In some instances, agents or mixtures for which there is inadequate evidence of carcinogenicity in humans but evidence suggesting lack of carcinogenicity in experimental animals, consistently and strongly supported by a broad range of other relevant data, may be classified in this group.
References

<table>
<thead>
<tr>
<th>Number</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1973</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>1973</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>1974</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>1974</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>1975</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>1976</td>
<td>360</td>
</tr>
<tr>
<td>7</td>
<td>1978</td>
<td>460</td>
</tr>
<tr>
<td>8</td>
<td>1979</td>
<td>604</td>
</tr>
<tr>
<td>9</td>
<td>1981</td>
<td>294</td>
</tr>
<tr>
<td>10</td>
<td>1983</td>
<td>326</td>
</tr>
<tr>
<td>11</td>
<td>1984</td>
<td>370</td>
</tr>
<tr>
<td>12</td>
<td>1986</td>
<td>385</td>
</tr>
<tr>
<td>13</td>
<td>1988</td>
<td>404</td>
</tr>
<tr>
<td>14</td>
<td>1990</td>
<td>369</td>
</tr>
</tbody>
</table>

IARC (1976–1991)

IARC (1979) Criteria to Select Chemicals for IARC Monographs (IARC intern. tech. Rep. No. 79/003), Lyon

This fifty-fifth volume of IARC Monographs contains evaluations of carcinogenic risks associated with human exposure to solar and ultraviolet (UV) radiation from medical and cosmetic devices, general illumination and industrial sources. Ultraviolet radiation (UVR) was considered previously (IARC, 1986) in a volume in which furocoumarins were evaluated. Since some of these compounds are used clinically in conjunction with ultraviolet A (UVA) radiation, information on the carcinogenic effects of UVR alone was provided in an appendix; however, no evaluation was made at that time.

Solar radiation is largely optical radiation (UV, visible and infrared), although both shorter wavelength (ionizing) and longer wavelength (microwaves and radiofrequency) radiation is present. UVR lies in the interval 100–400 nm and is further subdivided into UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm). The UV component of terrestrial radiation from the sun comprises about 95% UVA and 5% UVB; UVC is removed from extraterrestrial radiation by stratospheric ozone. Before the beginning of this century, the sun was essentially the only source of UVR; with the advent of artificial sources, the opportunity for additional exposure, not only to UVA and UVB but also to UVC, has increased. It should be stressed that the distinction of UVR into UV A, UVB and UVC ranges has no biological basis, and the potential of UVR for causing damage to biomolecules, cells, tissues and organisms varies enormously over the spectral region from 250 to 400 nm.

UVA radiation is one of the components of solar emissions and of emissions from medical lamps and lamps used for cosmetic purposes. UVB radiation is present in solar emissions, from lamps used in medicine and for cosmetic purposes and in certain lamps used for general illumination, such as unshielded fluorescent and tungsten–halogen lamps. It causes sunburn relatively easily and is immunosuppressive; it can cause ocular cataracts. The possibility that the UVB component of solar radiation will increase as a result of depletion of the ozone layer is a matter of concern. This question was not addressed in the present volume.

Human exposure to UVC radiation is uncommon and is related to the use of germicidal and tungsten–halogen lamps, phototherapy and welding arcs. Thus, very little is known about the effects of UVC on humans, although a great deal of information is available on the effects of radiation in this range on biomolecules, cells and viruses.

In the USA, skin melanoma has been second only to lung cancer in its rate of increase in incidence over the last 40 years: the incidence has been increasing by about 5% per year. The major sites have been male trunk and female leg. Mortality from melanoma may now be falling in younger generations (at least in the USA) due, possibly, to changes in sun exposure (Scotto et al., 1991). There is also evidence that the incidence of nonmelanocytic skin cancer is increasing in some white-skinned populations (Gallagher et al., 1990). Constitutional risk
factors, e.g., skin type, hair and eye colour and specific subtypes of exposure (for example, occupational and recreational), have been assessed in individual studies or sections of the monographs but have not been included in the evaluations.

UVR is ubiquitous and cannot be totally avoided. An appendix to this volume presents a discussion on the use of topical sunscreens, taking into consideration both potentially beneficial, protective effects and possible adverse reactions. The biological effects of combinations of psoralens and UVR were not considered since these were the subjects of separate monographs (IARC, 1980, 1986, 1987) in the IARC Monographs series.

References

SOLAR AND ULTRAVIOLET RADIATION
1. Exposure Data

1.1 Nomenclature

1.1.1 Optical radiation

Optical radiation is radiant energy within a broad region of the electromagnetic spectrum that includes ultraviolet (UV), visible (light) and infrared radiation. Ultraviolet radiation (UVR) is characterized by wavelengths between 10 and 400 nm—bordered on the one side by x rays and on the other by visible light (Fig. 1). Solar radiation is largely optical radiation, although ionizing radiation (i.e., cosmic rays, gamma rays and x rays, which have wavelengths less than approximately 10 nm) and radio-frequency radiation (i.e., wavelengths greater than 1 mm: microwaves and longer radio waves) are also present in the spectrum.

The optical radiation spectrum is generally considered to fall between 10 nm and 1 mm, and several different conventions have been developed to describe different bands within this spectrum. It is important to recognize that no single convention is uniquely ‘correct’ but that each may be useful for a particular branch of science and technology. For example, in optics, it is convenient to separate the spectrum into different bands on the basis of the transmission and absorption properties of optical materials (e.g., glass and quartz). In one optical convention, shown in Figure 1, UVR is divided into vacuum UV, extending from 10 to 180 nm; middle UV, from 180 nm to 300 nm; and near UV, from 300 nm to 380 or 400 nm. Meteorological scientists typically define optical spectral regions on the basis of atmospheric windows. Some spectral designations are based on uses, e.g., ‘germicidal’ and ‘black-light’ regions.

For the purposes of this monograph, the photobiological designations of the Commission Internationale de l’Eclairage (CIE, International Commission on Illumination) are the most relevant and are used throughout to define the approximate spectral regions in which certain biological absorption properties and biological interaction mechanisms may dominate (Commission Internationale de l’Eclairage, 1987). The CIE bands are: UVC (100–280 nm), UVB (280–315 nm) and UVA (315–400 nm). Visible light is the region between 400 nm and 780 nm.

It is important to recognize that these spectral band designations are merely short-hand notations and cannot be considered to designate fine dividing lines below which an effect is present and above which it does not occur. The reader should also be alerted to the fact that the CIE nomenclature is not always followed rigorously and that some authors introduce slight variations; for example, distinguishing between UVB and UVA at 320 rather than 315 nm (frequently used in the USA) and defining UVC as 200–280 nm (Moseley, 1988). The German Industrial Standard (DIN 5031) defines UVA as radiation between 315 and 380 nm (Mutzhas, 1986).
From the viewpoint of photochemistry and photobiology, interactions of optical radiation with matter are considered to occur when one photon interacts with one molecule to produce a photochemically altered molecule or two dissociated molecules (Phillips, 1983; Smith, 1989). In any photochemical interaction, the energy of the individual photon is important, since this must be sufficient to alter a molecular bond. The photon energy is generally expressed in terms of electron volts (eV). A wavelength of 10 nm corresponds to a photon energy of 124 eV, and 400 nm to an energy of 3.1 eV (WHO, 1979). The number of altered molecules produced relative to the number of absorbed photons is referred to as the ‘quantum yield’ (Phillips, 1983). The efficacy of photochemical interaction per incident quantum and the photobiological effects per unit radiant exposure typically vary widely with wavelength. A quantitative plot of such spectral variation, usually normalized to unity at the most effective wavelength, is referred to as an ‘action spectrum’ (Jagger, 1985).
1.1.2 Quantities and units

Two systems of quantities and units are used to describe the characteristics of light and light sources: the radiometric and the photometric systems. Radiometry can be applied to all optical sources and to all exposures to optical radiation (including solar radiation and UVR). Photometry can be used only to describe visible light sources, and photometric quantities are used in illumination engineering. The basic photometric unit is the lumen, which is defined in terms of the spectral response of the human eye (specifically, the spectral response of the CIE 'standard observer'), i.e., the action spectrum of vision, which is initially a photochemical process. It is important to recognize that radiometric quantities and units are absolute, while photometric quantities and units are related to standardized human perception; the relationship between the two sets of units varies significantly with the spectrum of radiation. The effects of optical radiation (including light), other than vision, must therefore be measured and quantified in terms of radiometric units and spectral characteristics rather than photometric units. This is particularly important in relation to the photobiological effects of UVR. Most lamps used for illumination are rated by manufacturers only in photometric terms (e.g., lumen output) and not in terms of UVR emission (Phillips, 1983).

The most important radiometric quantities and units commonly used to describe optical radiation are given in Table 1. Certain terms are used primarily to describe source characteristics, e.g., radiance, radiant intensity; whereas other terms are generally used to describe exposure (irradiance, radiant exposure). The term 'spectral' placed before any of the quantities implies restriction to a unit wavelength band, e.g., spectral irradiance (watts per square metre per nanometre) (Moseley, 1988). For a more detailed discussion of these parameters, see various standard textbooks on radiometry, such as Boyd (1983).

The quantities of radiometry are expressed in terms of absolute energy (Jagger, 1985). Radiant intensity is the power emitted per unit solid angle of a source. Radiance is the radiant intensity per unit area of source. Thus, a fluorescent lamp does not have very high radiance in comparison to the filament of a flashlight bulb, even though it has a high radiant power output. The radiometric term expressed in units of watts per square metre (dose rate) is irradiance, which is also the power striking a unit area of surface.

The energy of UVR falling on a unit surface area of an object was defined in 1954 by the First International Congress of Photobiology as the 'dose'; it has also been referred to as 'exposure dose'. The equivalent radiometric quantity is radiant exposure, expressed in joules per square centimetre or per square metre. Radiant exposure has been referred to as 'energy fluence' in some texts; however, fluence is a radiometric quantity, with the same units as radiant exposure, but referring to energy arriving at a plane of unit area from all directions, including backscatter. Thus, fluence is quite correctly of value in describing an exposure dose at a depth inside tissue; it has, however, seldom been calculated in photobiological studies of the effects of UVR, in which the radiant exposure incident upon the skin is normally measured. Radiant exposure is the amount of energy crossing a unit area of space normal to the direction of propagation of a beam of UVR. If the radiant energy arrives from many directions, as from the sky, then the fluence at one point is the sum of all the component fluences entering a unit sphere of space. The energy fluence rate is the power that crosses a unit area normal to the direction of propagation, or the energy per unit area per unit time.
Table 1. Some basic terminology used to quantify optical radiation

<table>
<thead>
<tr>
<th>Term</th>
<th>International symbol</th>
<th>Definition</th>
<th>SI unit</th>
<th>Synonyms and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td></td>
<td>nm</td>
<td>Nanometre = 10^{-9} m (also called millimicron, μm)</td>
</tr>
<tr>
<td>Radiant energy</td>
<td>Q_e</td>
<td>Σ (P_e × dt)</td>
<td>J</td>
<td>Joule; 1 joule = 1 watt × second; total energy contained in a radiation field or total energy delivered to a given receiver by such a radiation field</td>
</tr>
<tr>
<td>Radiant flux</td>
<td>P_e</td>
<td>dQ_e/dt</td>
<td>W</td>
<td>Watt; rate of delivery of radiant energy ("radiant power"); also expressed as φ</td>
</tr>
<tr>
<td>Irradiance</td>
<td>E_e</td>
<td>dP_e/dA</td>
<td>W/m²</td>
<td>Radiant flux arriving over a given area ("fluence rate", "dose rate", "intensity", "radiant incidence"). In photobiology, has also been expressed in W/cm², mW/cm² and μW/cm²</td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>I_e</td>
<td>dP_e/dΩ</td>
<td>W/sr</td>
<td>Watt/steradian; radiant flux emitted by source into a given solid angle (solid angle expressed in steradians)</td>
</tr>
<tr>
<td>Radiance</td>
<td>L_e</td>
<td>dP_e/dA × dΩ</td>
<td>W/m² × sr</td>
<td>Watt/m² × steradian; radiant flux per unit solid angle per unit area emitted by an extended source</td>
</tr>
<tr>
<td>Radiant exposure</td>
<td>H_e</td>
<td>E_e × t</td>
<td>J/m²</td>
<td>Radiant energy delivered to a given area ("fluence", "exposure dose"); t = time in seconds. Has also been expressed as J/cm², ml/cm² and μJ/cm²</td>
</tr>
</tbody>
</table>

(J/m²/s or W/m²). The terms dose (J/m²) and dose rate (W/m²) pertain to the energy and power, respectively, striking a unit surface area of an irradiated object (Jagger, 1985).

In terms of visible light perceived by humans, the photometric analogue of the radiancedose rate (W/m²) pertain to the energy and power, respectively, striking a unit surface area of an irradiated object (Jagger, 1985).

In terms of visible light perceived by humans, the photometric analogue of the radiancedose rate (W/m²) pertain to the energy and power, respectively, striking a unit surface area of an irradiated object (Jagger, 1985).

1.1.3 Units of biologically effective ultraviolet radiation

In addition to general radiometric quantities, specialized quantities of effective irradience relative to a specified photochemical action spectrum are used in photochemistry and photobiology. Effective radiant exposures to produce erythema (Jagger, 1985) or photokeratitis are examples. Effective irradience or radiant exposure is not limited to photobiology, and a similar approach has been used to quantify the photocuring of inks, in photopolymerization (Phillips, 1983) and in assessing the hazards of UVR. In order to weight a
source spectrally, the general formula involves an action spectrum and a spectral radiometric quantity. The effective irradiance of a given photobiological process is defined as:

\[\sum_{\lambda} E_{\lambda} \times S_{\lambda} \times \Delta_{\lambda} \]

expressed in W/m², where \(E_{\lambda} \) is the spectral irradiance (W/m² x nm) at wavelength \(\lambda \) (nm) and \(\Delta_{\lambda} \) is the wavelength interval (\(\lambda_1 \rightarrow \lambda_2 \)) used in the summation (in nm). \(S_{\lambda} \) is a measure of the effectiveness of radiation of wavelength \(\lambda \) (nm), relative to some reference wavelength, in producing a particular biological end-point. As it is a ratio, \(S_{\lambda} \) has no units (American Conference of Governmental Industrial Hygienists, 1991).

Effective irradiance is equivalent to a hypothetical irradiance of monochromatic radiation with a wavelength at which \(S_{\lambda} \) is equal to unity. The time integral of effective irradiance is the effective radiant exposure (also called the ‘effective dose’).

A unit of effective dose commonly used in cutaneous photobiology is the ‘minimal eryhema dose’ (MED). One MED has been defined as the lowest radiant exposure to UVR that is sufficient to produce eryhema with sharp margins 24 h after exposure (Morison, 1983a). Another end-point often used in cutaneous photobiology is a just-perceptible reddening of exposed skin; the dose of UVR necessary to produce this ‘minimal perceptible eryhema’ is sometimes also referred to as an MED. In unacclimatized, white-skinned populations, there is an approximately four-fold range in the MED of exposure to UVB radiation (Diffey & Farr, 1989). When the term MED is used as a unit of exposure dose, however, a representative value is chosen for sun-sensitive individuals. If, in the above expression for effective irradiance, \(S_{\lambda} \) is chosen as the reference action spectrum for eryhema (McKinlay & Diffey, 1987) and a value of 200 J/m² at wavelengths for which \(S_{\lambda} \) is equal to unity is assumed for the MED, the dose (expressed in MED) received after an exposure period of \(t \) seconds is

\[t \times \sum_{\lambda} E_{\lambda} \times S_{\lambda} \times \Delta_{\lambda}/200. \]

Notwithstanding the difficulties of interpreting accurately the magnitude of such an imprecise unit as the MED, it has the advantage over radiometric units of being related to the biological consequences of the exposure.

1.2 Methods for measuring ultraviolet radiation

UVR can be measured by chemical or physical detectors, often in conjunction with a monochromator or band-pass filter for wavelength selection. Physical detectors include radiometric devices, which depend for their response on the heating effect of the radiation, and photoelectric devices, in which incident photons are detected by a quantum effect such as the production of electrons. Chemical detectors include photographic emulsions, actinometric solutions and UV-sensitive plastic films.

1.2.1 Spectroradiometry

The fundamental way of characterizing a source of UVR is on the basis of its spectral power distribution in a graph (or table) which indicates the radiated power as a function of wavelength. The data are obtained by a technique known as spectroradiometry. Spectral
measurements are often not required as ends in themselves but are used to calculate biologically weighted radiometric quantities. A spectroradiometer comprises three essential components (Gibson & Diffey, 1989):

(i) input optics, such as an integrating sphere or Teflon diffuser, which collects the incident radiation and conducts it to
(ii) the entrance slit of a monochromator, which disperses the radiation by means of one or two wavelength dispersive devices (either diffraction grating or prism). The monochromator also incorporates mirrors to guide the radiation from the entrance slit to the dispersion device and on to the exit slit, where it is incident on
(iii) a radiation detector, normally a photodiode or, for higher sensitivity, a photomultiplier tube.

Spectroradiometry is generally considered to be the best way of specifying UV sources, although the accuracy of spectroradiometry, particularly with respect to the UVB waveband of terrestrial radiation, is affected by a number of parameters including wavelength calibration, band width, stray radiation, polarization, angular dependence, linearity and calibration sources. It is therefore essential to employ a double monochromator for accurate characterization of terrestrial UVR and particularly UVB (Garrison et al., 1978; Kostkowski et al., 1982; Gardiner & Kirsch, 1991).

1.2.2 Wavelength-independent (thermal) detectors

General-purpose radiometers incorporate detectors that have a flat response over a wide range of wavelengths. Such thermal detectors operate on the principle that incident radiation is absorbed by a receiving element, and the temperature rise of the element is measured, usually by a thermopile or a pyroelectric detector. A thermopile, which comprises several thermocouples connected in series for improved sensitivity, must have a window made of fused silica for measuring UVR at wavelengths down to at least 250 nm. Pyroelectric detectors rely on a voltage generated by temperature changes in a lithium tantalate crystal. Thermal detectors are normally used to measure the total radiant power of a source rather than just the UV component (Moseley, 1988).

Instruments for measuring broad-band solar radiation fall into three categories: pyrheliometers, pyranometers and pyranometers with a shading device (Iqbal, 1983). These types of instrument find their applications in meteorology rather than in UV photobiology.

1.2.3 Wavelength-dependent detectors

Detectors of this type have a spectral response that varies widely depending on the types of detector and filters that may be incorporated. Detectors can be designed to have a spectral response that matches a particular action spectrum for a photobiological end-point. The success with which this is achieved is variable. The most widely used device, particularly for measuring solar UVR, has been the Robertson–Berger meter (Robertson, 1972; Berger, 1976), which incorporates optical filters, a phosphor and a vacuum phototube or photovoltaic cell. This device measures wavelengths of less than 330 nm in the global spectrum with a spectral response that rises sharply with decreasing wavelength. It has been used to monitor natural UVR continuously at several sites throughout the world (Berger & Urbach, 1982; Diffey, 1987a).
Detectors incorporating a photodiode or vacuum photocell in conjunction with optical filter(s) and suitable input optics (e.g., a quartz hemispherical detector) have been produced to match a number of different action spectra. One such detector is the International Light Model 730 UV Radiometer, which has a spectral response close to the action spectrum designated by the American Conference of Governmental Industrial Hygienists for evaluating the hazard to health of exposure to UVR, and has been used to measure irradiance over different terrains (Sliney, 1986).

Wavelength-dependent detectors with spectral responses largely in the UVA waveband are used, for example, in measuring the output of irradiation units for the treatment of psoriasis by psoralen photochemotherapy (Morison, 1983a).

A different yet complementary approach is the use of various photosensitive films as UV dosimeters. The principle is to relate the degree of deterioration of the films, usually in terms of changes in their optical properties, to the dose of incident UVR. The principal advantages of the film dosimeter are that it provides a simple means of integrating exposure continuously and allows simultaneous comparison of numerous sites that are inaccessible to bulky, expensive instruments (Diffey, 1987a). The most widely used photosensitive film is polymer polysulfone (Diffey, 1989a). Personal dosimeters of polysulfone film have been developed and used in a number of dosimetric studies (Challoner et al., 1976, 1978; Leach et al., 1978; Holman et al., 1983a; Larkö & Diffey, 1983; Diffey, 1987a; Schothorst et al., 1987a; Slaper, 1987; Rosenthal et al., 1990).

It is difficult to achieve a prescribed UVR spectral response with wavelength-dependent detectors. Accurate results can be achieved only if the detectors are calibrated against the appropriate source spectrum using a spectroradiometer (Gibson & Diffey, 1989). Unless this is done, severe dosimetric errors can arise, particularly with measurements of solar UVR (Diffey, 1987a; Sayre & Kligman, 1992).

Accurate measurement of UVB radiation is far more difficult than would appear initially. The primary problem is that the UVB produced by most optical sources—the sun as well as incandescent and fluorescent lamps used for illumination—is only a very small fraction (i.e., less than 0.3%) of the total radiant energy emitted. Additionally, biological action spectra (e.g., for erythema and photokeratitis) typically decrease dramatically within the same waveband in which the source spectrum increases (Diffey & Farr, 1991a). This means that either a spectroradiometer or a direct-reading filtered ‘eryhemal’ or ‘hazard’ meter must reject out-of-band radiant energy to better than one part in 10^4 or even 10^5. The spectral band-width of a monochromator can also greatly affect measurement error: too large a band-width can reduce the steepness of reported action spectra.

1.3 Sources and exposures

In the broadest sense, UVR may be produced when a body is heated (incandescence) or when electrons that have been raised to an excited state return to a lower energy level, as occurs in fluorescence, in an electric discharge in a gas and in electric arcs (optical plasma) (Sliney & Wolbarsht, 1980; Phillips, 1983; Moseley, 1988). The characteristics of exposures to both terrestrial solar radiation (an incandescent source) and artificial light sources are discussed in the following sections.
1.3.1 Solar ultraviolet radiation

Optical radiation from the sun is modified significantly as it passes through the Earth's atmosphere (Fig. 2), although about two-thirds of the energy from the sun that impinges on the atmosphere penetrates to ground level. The annual variation in extra-terrestrial radiation is less than 10%, but the variation in the modifying effect of the atmosphere is far greater (Moseley, 1988). Measurements corrected for atmospheric absorption show that the visible portion comprises approximately 40% of the total radiation received at the surface of the Earth. While UVR comprises only a small proportion of the total radiation (approximately 5%), this component is extremely important in various biological processes. The principal effect of infrared radiation is to warm the earth; approximately 55% of the solar radiation received at the surface of the earth is infrared (Foukal, 1990).

Fig. 2. Spectral irradiance from the sun outside the Earth's atmosphere (upper curve) and at sea level (lower curve)

From Moseley (1988)

On its path through the atmosphere, solar radiation is absorbed and scattered by various constituents of the atmosphere. It is scattered by air molecules, particularly oxygen and nitrogen (Rayleigh scattering), which produce the blue colour of the sky. It is also scattered by aerosol and dust particles (Mie scattering) and is scattered and absorbed by atmospheric pollution. Total solar irradiance and the relative contributions of different wavelengths vary with altitude. Clouds attenuate solar radiation, although their effect on infrared radiation is greater than on UVR. Reflection of sunlight from certain ground surfaces may contribute significantly to the total amount of scattered UVR. An effective absorber of solar UVR is ozone in the stratosphere (Moseley, 1988). An equally important absorber in the longer wavelengths (infrared) is water vapour (Diffey, 1991); a secondary absorber in this range is carbon dioxide. These two filter out much of the solar energy with wavelengths longer than 1000 nm (Sliney & Wolbarsht, 1980).
The quality (spectral distribution) and quantity (total UV irradiance) of UVR reaching the Earth's surface depend on the radiated power from the sun and the transmitting properties of the atmosphere. Although UVC exists in the extra-terrestrial solar spectrum, it is filtered out completely by the ozone layer in the atmosphere. UVB radiation, which represents about 5% of the total solar UVR that reaches the Earth (Sliney & Wolbarsht, 1980), has been considered to be the most biologically significant part of the terrestrial UV spectrum. The levels of UVB radiation reaching the surface of the Earth, although heavily attenuated, are also largely controlled by the ozone layer.

Ozone (O₃) is a gas which comprises approximately one molecule out of every two million in the atmosphere. It is created by the reaction of molecular oxygen (O₂) with atomic oxygen (O), formed by the dissociation of O₂ by short-wavelength UVR (< 242 nm) in the stratosphere at altitudes between about 25 and 100 km. Absorption of UVR at wavelengths up to about 320 nm converts the ozone back to O₂ and O, and it is this dissociation of ozone that is responsible for preventing radiation at wavelengths less than about 290 nm from reaching the Earth's surface (Moseley, 1988; Diffey, 1991). Molina and Rowland (1974) first proposed that chlorofluorocarbons and other gases released by human activity could alter the natural balance of creative and destructive processes and lead to depletion of the stratospheric ozone layer. Substantial reductions, of up to 50%, in the ozone column observed in the austral spring over Antarctica were first reported in 1985 and may continue. There are, however, serious limitations in our current understanding of and ability to quantify ozone depletion at the present levels of contaminant release and in our ability to predict the effects on stratospheric ozone of any further increases (United Nations Environment Programme, 1989; United Kingdom Stratospheric Ozone Review Group, 1991).

A number of factors influence terrestrial UVR levels:
- Variations in stratospheric ozone with latitude and season (United Nations Environment Programme, 1989)
- Time of day: In summer, about 20–30% of the total daily amount of UVR is received between 11:00 and 13:00 h and 75% between 9:00 and 15:00 h (Diffey, 1991; Table 2 and Fig. 3). Although the amount of visible light falling on the ground in the summer may vary by only 30% between 12:00 and 15:00 h (local solar time), the short-wavelength component of the UVB spectrum undergoes a dramatic change during

<table>
<thead>
<tr>
<th>Latitude (°N)</th>
<th>UVB</th>
<th>UVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11:00–13:00 h</td>
<td>9:00–15:00 h</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>78</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>75</td>
</tr>
<tr>
<td>60</td>
<td>26</td>
<td>69</td>
</tr>
</tbody>
</table>

From Diffey (1991)
Fig. 3. Daily variation in ultraviolet radiation: erythemal effective irradiance falling on a horizontal earth surface at Denver, CO, USA, on one summer’s day.

From Machta et al. (1975)

this period. At a wavelength of 300 nm, the spectral irradiance decreases by 10 fold, from approximately 1.0 to 0.1 \(\mu \text{W/(cm}^2 \times \text{nm}) \) (Sliney, 1986).

- **Season**: Seasonal variation in terrestrial UV irradiance, especially UVB, at the Earth’s surface is significant in temperate regions but much less nearer the equator (Table 3).

<table>
<thead>
<tr>
<th>Latitude (°N)</th>
<th>Winter</th>
<th>Spring/Autumn</th>
<th>Summer</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (Hawaii, USA)</td>
<td>14</td>
<td>20</td>
<td>25</td>
<td>6000</td>
</tr>
<tr>
<td>30 (Florida, USA)</td>
<td>5</td>
<td>12</td>
<td>15</td>
<td>4000</td>
</tr>
<tr>
<td>40 (Spain)</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>2500</td>
</tr>
<tr>
<td>50 (Belgium)</td>
<td>0.4</td>
<td>3</td>
<td>10</td>
<td>1500</td>
</tr>
</tbody>
</table>

From Diffey (1991)

- **Geographical latitude**: Annual UVR exposure dose decreases with increasing distance from the equator (Table 3).

- **Clouds**: Clouds reduce UV ground irradiance; changes in UVR are smaller than those of total irradiance because water in clouds attenuates solar infrared radiation much more than UVR. Even with heavy cloud cover, the scattered UVB component of sunlight (often called skylight) is seldom less than 10% of that under clear sky; however, very heavy cloud cover can virtually eliminate UVB even in summer. Light clouds scattered over a blue sky make little difference in sunburning effectiveness unless they directly cover the sun. Complete light cloud cover prevents about 50% of UVB energy, relative to that from a clear sky, from reaching the surface of the Earth (Diffey, 1991).
- **Surface reflection:** The contribution of reflected UVR to a person's total UVR exposure varies in importance with a number of factors (Table 4). A grass lawn scatters about 3% of incident UVB radiation. Sand reflects about 10–15%, so that sitting under an umbrella on the beach can lead to sunburn both from scattered UVB from the sky and reflected UVB from the sand. Fresh snow has been reported to reflect up to 85–90% of incident UVB radiation, although reflectance of about 30–50% is probably more typical. Ground reflectance is important, because parts of the body that are normally shaded are exposed to reflected radiation (Diffey, 1990a).

<table>
<thead>
<tr>
<th>Material</th>
<th>Reflectance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawn grass, summer, Maryland, California and Utah</td>
<td>2.0–3.7</td>
</tr>
<tr>
<td>Lawn grass, winter, Maryland</td>
<td>3.0–5.0</td>
</tr>
<tr>
<td>Wild grasslands, Vail Mountain, Colorado</td>
<td>0.8–1.6</td>
</tr>
<tr>
<td>Lawn grass, Vail, Colorado</td>
<td>1.0–1.6</td>
</tr>
<tr>
<td>Flower garden, pansies</td>
<td>1.6</td>
</tr>
<tr>
<td>Soil, clay/humus</td>
<td>4.0–6.0</td>
</tr>
<tr>
<td>Sidewalk, light concrete</td>
<td>10–12</td>
</tr>
<tr>
<td>Sidewalk, aged concrete</td>
<td>7.0–8.2</td>
</tr>
<tr>
<td>Asphalt roadway, freshly laid (black)</td>
<td>4.1–5.0</td>
</tr>
<tr>
<td>Asphalt roadway, two years old (grey)</td>
<td>5.0–8.9</td>
</tr>
<tr>
<td>House paint, white, metal oxide</td>
<td>22</td>
</tr>
<tr>
<td>Boat dock, weathered wood</td>
<td>6.4</td>
</tr>
<tr>
<td>Aluminium, dull, weathered</td>
<td>13</td>
</tr>
<tr>
<td>Boat deck, wood, urethane coating</td>
<td>6.6</td>
</tr>
<tr>
<td>Boat deck, white fibreglass</td>
<td>9.1</td>
</tr>
<tr>
<td>Boat canvas, weathered, plasticized</td>
<td>6.1</td>
</tr>
<tr>
<td>Chesapeake Bay, Maryland, open water</td>
<td>3.3</td>
</tr>
<tr>
<td>Chesapeake Bay, Maryland, specular component of reflection at Z = 45°N</td>
<td>13</td>
</tr>
<tr>
<td>Atlantic Ocean, New Jersey coastline</td>
<td>8.0</td>
</tr>
<tr>
<td>Sea surf, white foam</td>
<td>25–30</td>
</tr>
<tr>
<td>Atlantic beach sand, wet, barely submerged</td>
<td>7.1</td>
</tr>
<tr>
<td>Atlantic beach sand, dry, light</td>
<td>15–18</td>
</tr>
<tr>
<td>Snow, fresh</td>
<td>88</td>
</tr>
<tr>
<td>Snow, two days old</td>
<td>50</td>
</tr>
</tbody>
</table>

From Sliney (1986)

- **Altitude:** In general, each 300-m increase in altitude increases the sunburning effectiveness of sunlight by about 4%. Conversely, places on the Earth's surface below sea level have lower UVB exposures than nearby sites at sea level (Diffey, 1990a).
- Air pollution: Tropospheric ozone and other pollutants can decrease UVR, particularly in urban areas (Frederick, 1990).

(a) Measurements of terrestrial solar radiation

Since UVR wavelengths between about 295 and 320 nm (UVB radiation) in the terrestrial solar spectrum are thought to be those mainly responsible for adverse health effects, a number of studies have concentrated on measuring this spectral region (Sliney, 1986). Accurate measurements of UVR in this spectral band are difficult to obtain, however, because the spectral curve of terrestrial solar irradiance increases by a factor of more than five between 290 and 320 nm (Fig. 4). Nevertheless, extensive measurements of ambient

![Fig. 4. Action spectrum designated by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing the hazard of ultraviolet radiation (very similar to erythemal action spectrum from 300–230 nm) and the solar spectrum. The ACGIH action spectrum, which is unitless, is closely fit by some radiometers; however, because of the small overlap of the terrestrial solar spectrum with the action spectrum, problems of stray light must be dealt with by constant checks with a filter that blocks wavelengths of less than 320 nm](image-url)

Adapted from Sliney et al. (1990)
UVR in this spectral band have been performed worldwide (Schulze, 1962; Schulze & Gräfe, 1969; Henderson, 1970; Sundararaman et al., 1975; Garrison et al., 1978; Doda & Green, 1980; Mecherikunnel & Richmond, 1980; Kostkowski et al., 1982; Ambach & Rehwald, 1983; Blumthaler et al., 1983; Livingston, 1983; Blumthaler et al., 1985a,b; Kolari et al., 1986; Hietanen, 1990; Sliney et al., 1990). Longer-wavelength UVR (UVA) was measured at the same time in many of these studies. Measurements of terrestrial solar UVA radiation are less subject to error than measurements of UVB, since the spectrum does not vary widely with zenith angle and the spectral irradiance curve is relatively flat.

Maps of annual UVR exposure, such as that shown in Figure 5, have been compiled for epidemiological studies of skin cancer and other diseases (Schulze, 1962, 1970; Scotto et al., 1976). Despite the large numbers of measurements, their interpretation in relation to human exposure has been complicated by three factors: (i) the considerable variation in UVB spectral irradiance with solar position throughout the day and with season; (ii) the effect of the geometry of exposure of individuals; and (iii) variation between humans in outdoor exposure and the parts of their bodies that are exposed.

Fig. 5. Global distribution of ultraviolet radiation

From Schulze (1970); WHO (1979)

The total solar radiation that arrives at the Earth's surface is termed 'global radiation', and measurements of terrestrial UVR most frequently pertain to this quantity, i.e., the radiant energy falling upon a horizontal surface from all directions (both direct and scattered radiation). Global radiation comprises two components, referred to as 'direct' and 'diffuse'.
Approximately 70% of the UVR at 300 nm is in the diffuse component rather than in the direct rays of the sun (Fig. 6). The ratio of diffuse to direct radiation increases steadily from less than 1.0 at 340 nm to at least 2.0 at 300 nm (Garrison et al., 1978).

Fig. 6. Diffuse and direct solar spectral irradiance (solar zenith angle, 45°)

From Garrison *et al.* (1978)

UV radiation reflected from the terrain (the albedo) may also be important; however, essentially all measurement programmes have been limited to the direct and total diffuse components of sunlight. While such measurements are of interest in calculating the exposure dose of UVR of a prone individual, they are of very limited value in estimating exposure of the eye and shaded skin surfaces (e.g., under the chin), where the UVB radiation incident upon the body from terrain reflectance and horizon sky is of far greater importance. Sliney (1986) and Rosenthal *et al.* (1988) reported measurements of outdoor ambient UVR that included the reflected component to the eye. Exposure data for different anatomical sites is of value in developing biological dose–response relationships (Diffey *et al.*, 1979). The fact that ocular exposure differs significantly from cutaneous exposure is emphasized by the finding that photokeratitis is seldom experienced during sunbathing yet the threshold for UV photokeratitis is less than that for erythema of the skin (Sliney, 1986).
Measurements of the angular distribution of UVR relative to solar position and cloud distribution have been reported (Sliney, 1986; Fig. 7). A cloud obscuring the sun had no effect upon the UV radiance of open blue sky or the horizon sky; however, when the sun was 'out' (i.e., in an open sky), clouds near the horizon opposite the sun apparently reflected more UVR than would otherwise be present from the blue sky. This confirms the findings of studies of photographs of the sky taken through a narrow-band filter at 320 nm (Livingston, 1983), which revealed that the sky looks almost uniformly bright even when clouds are present and the clouds disappear into a uniformly hazy sky. Only the sun stands out, as would be expected from the plots on Figure 7. When the sun is near the horizon and can be looked at without great discomfort (i.e., at $Z = 75-90^\circ$), the effective UV irradiance is again of the order of $0.3 \mu W/cm^2$, e.g., about $0.08-1.1 \mu W/cm^2$ at an elevation angle of $12-15^\circ$ (Sliney, 1986).

Fig. 7. Semilogarithmic plots of the angular dependence of skylight for 290-315 nm ultraviolet radiation (UVR) with the sun at zenith angle of about 45°. A narrow field-of-view detector was scanned from zenith to the horizon. Uppermost curves show that direct UVR from the sun is more than 10 times greater than scattered UVR normally incident upon the eye at near-horizon angles where the zenith angle $Z = 70-90^\circ$. Most surprising is the similarity of blue sky and cloudy sky UV irradiances at zenith or near the horizon.

(b) Personal exposures

The exposure of different anatomical sites to solar UVR depends not only on ambient UVR and orientation of sites with respect to the sun but also on cultural and social behaviour, type of clothing and whether spectacles are worn.
Measurements of ambient UVR are useful in that they provide upper limits on human exposure (Scotto et al., 1976). They are of lesser value for assessing exposure doses received by groups of individuals. Polysulfone film has been used to monitor personal exposure to solar UVR (see p. 49). The wide variations in recorded exposure doses reflect diversity of behaviour and, in most cases, the small numbers (< 30) of subjects monitored. Nevertheless, it can be estimated that recreational (excluding vacations) exposure to the sun of people in northern Europe (where most of these studies were carried out) results in an annual solar exposure dose to the face of 20–100 MED, depending on the propensity for outdoor pursuits. The annual weekday UV exposure dose of indoor workers is around 30 MED; as a two-week outdoor vacation can result in a further 30–60 MED, the total annual exposure dose to the face of most indoor workers is probably in the range 40–160 MED. Outdoor workers at the same latitudes receive about two to three times these exposure doses, typically around 250 MED (Diffey, 1987b; Slaper, 1987).

An alternative approach to estimating personal exposure is to combine measured data on ambient UVR with a behavioural model of exposure. This approach was applied to a group of more than 800 outdoor workers in the USA (40 °N) by Rosenthal et al. (1991). These investigators estimated annual facial exposure doses of 30–200 MED, which are considerably lower than those estimated for outdoor workers in northern Europe, perhaps because Rosenthal et al. assumed facial exposure to be about 5–10% of ambient. A number of researchers have used polysulfone film badges on both human subjects (Holman et al., 1983a; Rosenthal et al., 1990) and mannequins (Diffey et al., 1977, 1979; Gies et al., 1988) to measure solar UVR exposure on the face relative to ambient exposure. The results vary considerably, reflecting factors such as positioning of film badges, behaviour of individuals, solar altitude and the influence of shade. Examination of the data suggests, however, that the exposure of an unprotected face is probably close to 20% of the ambient. Using this estimate, the annual facial exposure doses in the outdoor worker group studied by Rosenthal et al. (1991) would be about 80–500 MED. These data demonstrate clearly the current uncertainties associated with estimates of population exposure doses.

1.3.2 Exposure to artificial sources of ultraviolet radiation

(a) Sources

Six artificial sources that often produce UVR incidental to the production of visible light (Sliney & Wolbarsht, 1980; Phillips, 1983; Moseley, 1988) are described below.

(i) Incandescent sources

Optical radiation from an incandescent source appears as a continuous spectrum. Incandescent sources are usually ascribed a certain ‘colour temperature’, defined as the temperature of a black body that emits the same relative spectral distribution as the source. UVR is emitted in significant quantity when the colour temperature exceeds 2500 °K (2227 °C). Tungsten–halogen lamps in a quartz envelope (colour temperature, 3000 °K [2727 °C]) may emit significant UVR, whereas the UVR emission of an ordinary tungsten light bulb is negligible.
(ii) **Gas discharge lamps**

Another method of producing optical radiation is to pass an electric current through a gas. The emission wavelengths are determined by the type of gas present in the lamp and appear as spectral lines. The width of the lines and the amount of radiation in the interval between them (the continuum) depend on the pressure in the lamp. At low pressures, fine lines with little or no continuum are produced; as pressure is increased, the lines broaden and their relative amounts alter. Low-pressure discharge lamps, commonly containing mercury, argon, xenon, krypton or neon, are useful for spectral calibration. Medium-pressure mercury lamps operate at an envelope temperature in the region of 600–800 °C.

(iii) **Arc lamps**

Arc lamps operate at high pressures (20–100 atm [2020–10133 kPa]) and are very intense sources of UVR. Commonly available lamps contain xenon, mercury or a mixture of the two elements, which are effective sources of UVR. Xenon arc lamps operate at a colour temperature of 6000 °K (5727 °C); they are often used as the light source in solar simulation or are combined with a monochromator in spectral illumination systems. Deuterium arc lamps provide a useful source of UVC radiation and find their main use in spectrophotometers and as a calibration source for spectroradiometers.

(iv) **Fluorescent lamps**

The primary source of radiation in a fluorescent lamp arises from a low-pressure mercury discharge, which produces a strong emission at 254 nm, which in turn excites a phosphor-coated lamp to produce fluorescence. By altering the composition and thickness of the phosphor and the glass envelope, a wide variety of emission spectral characteristics can be obtained. The output is thus chiefly the fluorescent emission spectrum from the coating, with a certain amount of breakthrough of UVB mercury lines at 297, 303 and 313 nm, as well as those in the UVA and visible regions (WHO, 1979).

(v) **Metal halide lamps**

The addition of other metals (as halide salts) to a mercury discharge lamp allows for the addition of extra lines to the mercury emission spectrum. Most such tubes are basically medium-pressure discharge lamps with one or more metal halide additives, usually iodide. Advantage has been taken of the strong lead emission lines at 364, 368 and 406 nm in the lead iodide lamp, in which there is a 50% increase in output in the region between 355 and 380 nm compared to a conventional mercury lamp. Antimony and magnesium halide lamps provide spectral lines in the UVB and UVC regions.

(vi) **Electrodeless lamps**

A type of lamp recently introduced on a large scale is the electrodeless lamp. In this design, the discharge tube absorbs microwave energy fed, via waveguides, into a microwave chamber containing the tube. Two 1500-W magnetrons generate microwave energy at 2450 MHz. The life of such lamps is longer than that of electrode lamps, and a greater range of metal halides is available. Electrodeless lamps are used extensively for UV curing of inks and coatings, particularly when a short lamp length is adequate for the area to be irradiated. They have often been the first choice for curing prints on containers such as two-piece cans, plastic pots and bottles, and tubes.
(b) Human exposure

Although the sun remains the main source of UVR exposure for humans, the advent of artificial UVR sources has increased the opportunity for both intentional and unintentional exposure.

Intentional exposure is most often to acquire a tanned skin, frequently using sunbeds and solaria emitting principally UVA (315–400 nm) radiation (Diffey, 1987c). Another reason for intentional exposure to artificial UVR is the treatment of skin diseases, notably psoriasis.

Unintentional exposure is most often the result of occupation, and workers in many industries (see p. 66) may be exposed to UVR from artificial sources. The general public is exposed to low levels of UVR from sources such as fluorescent lamps used for indoor lighting and may be exposed in shops and restaurants where UVA lamps are employed in traps to attract flying insects.

(i) Cosmetic use

To some individuals, a tanned skin is socially desirable. A ‘suntanning industry’ has grown up, particularly in northern Europe and North America, in which artificial sources of UVR supplement exposure to sunlight.

Description of UVR sources used for tanning: Prior to the mid-1970s, the source of UVR was usually an unfiltered, medium- or high-pressure mercury arc lamp which emitted a broad spectrum of radiation, from UVC through to visible and infrared radiation (Diffey & Farr, 1991b). The units often incorporated one or more infrared heaters and were commonly called ‘sunlamps’ or ‘health lamps’ (Anon., 1979). One disadvantage of this type of unit was that the area of irradiation was limited to a region such as the face and so whole-body tanning was tedious. By incorporating several mercury arc lamps into a ‘solarium’, whole body exposure was achieved. Tanning devices based on mercury arc lamps emit relatively large quantities of UVB and UVC radiation, resulting in a significant risk of burning and acute eye damage. Solaria that incorporate unfiltered mercury arc lamps are therefore now less popular (Diffey, 1990a).

So-called UVB fluorescent lamps (e.g., Westinghouse FS Sunlamp, Philips TL12) emit approximately 55% of their UV energy in the UVB and approximately 45% in the UVA regions (Diffey & Langley, 1986). They were often used in tanning booths, more commonly in the USA than in Europe.

Sunbeds, incorporating high-intensity UVA fluorescent lamps, were developed in the 1970s. These devices consist of a bed and/or canopy incorporating 6–30 fluorescent lamps 150–180 cm in length. The earliest type of UVA lamp used in sunbeds is typified by the Philips TL09, Wotan L100/79 and Wolff Solarium lamps (Diffey, 1987c). The spectral power distribution from this type of lamp is shown in Figure 8a. The emission spectrum comprises the fluorescence continuum, extending from about 315 to 400 nm and peaking at 350–355 nm, together with the characteristic lines from the mercury spectrum down to 297 nm (UVB) (Diffey & McKinlay, 1983). The UVA irradiance at the skin surface from a typical sunbed or suncanopy containing these lamps is between 50 and 150 W/m² (Bowker & Longford, 1987; Bruyneel-Rapp et al., 1988).
In the mid-1980s, another type of UVA fluorescent lamp (Philips TL10R) was introduced especially for cosmetic tanning. The principal features of this type of lamp were a reflector intrinsic to the lamp envelope and a fluorescence spectrum extending from about 340 to 400 nm, peaking at 370 nm (Fig. 8b); note also the presence of characteristic mercury lines in the UVB region. The skin surface irradiance from a sunbed or suncanopy incorporating Philips TL10R lamps is typically around 250 W/m² (Diffey, 1987c).

Another type of UV fluorescent lamp that has been used in sunbeds is the so-called ‘fast tan’ tube. This type of lamp is typified by the Wolff Bellarium S, the spectral power distribution of which is shown in Figure 8(c). The spectrum extends from about 290 to 400 nm and peaks at around 350 nm (Diffey & Farr, 1987).

Optically filtered, high-pressure mercury lamps doped with metal halide additives are also used in cosmetic tanning. The spectral emission lies entirely within the UVA waveband (Fig. 8d), and irradiances at the skin surface of more than 1000 W/m² can be achieved. The best known of this type of unit is probably the UVASUN (Mutzhas, 1986).

A summary of the physical and photobiological emissions from these different types of lamps is given in Table 5 (Diffey & Farr, 1991a).
Table 5. Characteristics of different ultraviolet (UV) lamps used for tanning

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Radiation emission (%)</th>
<th>Contribution to tanning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UVA</td>
<td>UVB</td>
</tr>
<tr>
<td>Mercury arc sunlamp</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Simulated sunlight lamp</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>Type I UVA lamp</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Type II UVA lamp</td>
<td>> 99.9</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Optically filtered high-pressure lampa</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Summer UV sunlightb</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>

From Diffey & Farr (1991b) unless otherwise specified
aFrom Mutzhas (1986)
bFrom Sliney & Wolbarsht (1980)

Exposure to UVR sources used for tanning: Telephone surveys carried out in the Netherlands (Bruggers et al., 1987) and in the United Kingdom (Anon., 1987) in the mid-1980s showed that 7–9% of the adult population in each country had used sunbeds in the previous one to two years. A more recent market survey in the United Kingdom (R. McLauchlan, personal communication), with a sample size of 5800, gave a slightly higher figure, with 10% of the population having used a sunbed during the previous year (1988) and 19% of the sample admitting to having used a sunbed at some time in the past. In these and other surveys in the United Kingdom (Diffey, 1986) and the USA (Dougherty et al., 1988), women accounted for 60–85% of users, about half of the subjects being young women aged between 16 and 30. The commonest reason given for using tanning equipment was to acquire a pre-holiday tan (Anon., 1987; R. McLauchlan, personal communication); other reasons included perceived health benefits, reduction of stress and improved relaxation, protection of the skin before going on holiday, sustaining a holiday tan and treatment of skin diseases such as psoriasis and acne (Diffey, 1986; Dougherty et al., 1988).

In the Dutch survey (Bruggers et al., 1987), about half of the users interviewed used tanning equipment at home and the other half used facilities at commercial premises, such as tanning salons, hairdressers, sports clubs and swimming pools. Most people had used UVA equipment; 24% had used either UVB mercury arc sunlamps or solaria incorporating these lamps. A more recent survey in the United Kingdom (McLauchlan, 1989) confirmed the Dutch finding that the amount of use at home and at commercial premises was approximately the same. A survey carried out at commercial establishments in the United Kingdom indicated that all the equipment used emitted primarily UVA radiation, mostly from fluorescent UVA lamps and 10% from optically filtered high-pressure metal halide lamps (Diffey, 1986). Sales of tanning appliances in the United Kingdom increased rapidly during the 1980s, but by the end of the decade there appeared to be a steady, or possibly reduced, level of sales (Diffey, 1990a).

The mean number of tanning sessions per year in the Dutch study was 23 (Bruggers et al., 1987). In the United Kingdom, half-hour sessions were the most popular (Diffey, 1986). Each tanning session with UVA equipment normally results in an erythemally-weighted exposure...
EXPOSURE DATA

of about 0.8 MED (150 J/m²), whereas exposure to mercury arc lamps results in about 2 MED per session (400 J/m²). In the Dutch survey, it was estimated that the median annual exposure was 24 MED (4.8 kJ/m²) (Bruggers et al., 1987).

(ii) Medical and dental applications

UVR has both diagnostic and therapeutic applications in medicine and dentistry. The diagnostic uses are confined largely to fluorescing of skin and teeth, and the UVR source is normally an optically filtered medium-pressure mercury arc lamp producing radiation mainly at 365 nm (so-called ‘Wood’s lamps’) (Caplan, 1967). Radiation exposure is limited to small areas (< 15 cm in diameter), and the UVA radiation dose per examination is probably no more than 5 J/cm². The therapeutic uses of UVR, which result in considerably higher doses, are mainly in the treatment of skin diseases and occasionally the symptomatic relief of pruritus.

Phototherapy: The skin diseases that are most frequently treated with UVR are psoriasis and eczema. Phototherapy of psoriasis at hospital may include the use of tar and related derivatives and other substances, such as anthralin, on the skin (Morison, 1983a; see also IARC, 1987a).

The first treatment of psoriasis with an artificial source of UVR is credited to Sardemann, who used a carbon arc lamp of the type developed by Finsen at around the turn of the century. These lamps were unpopular in clinical practice because they emitted noise, odour and sparks, and they were superseded by the development of the medium-pressure mercury arc lamp. In the 1960s, a variety of metal halides were added to mercury lamps to improve emissions in certain regions of the UV and visible spectra. Fluorescent lamps were developed in the late 1940s; since then, a variety of phosphor and envelope materials have been used to produce lamps with emissions in different regions of the UV spectrum, such that, today, there exists a wide range of lamps for the phototherapy of skin diseases (Diffey & Farr, 1987).

Lamp systems can be classified into one of five categories in terms of suitability for phototherapy (Diffey, 1990b):

Type A: a single, medium-pressure mercury arc or metal halide lamp;

Type B: one or more vertical columns containing five or six optically filtered high-pressure metal halide lamps;

Type C: a canopy or cubicle containing fluorescent sunlamps which emit predominantly UVB but also significant amounts of radiation at wavelengths below 290 nm (e.g., Westinghouse FS sunlamp, Philips TL12 and Sylvania UV21 lamps);

Type D: a canopy, sunbed or cubicle incorporating fluorescent lamps which emit predominantly UVB radiation and negligible amounts of radiation at wavelengths below 290 nm (e.g., the Wolff Helarium);

Type E: a newly developed fluorescent lamp that emits a narrow band of radiation around 311-312 nm (Philips TL01).

The spectral power distributions characteristic of each of these five types of lamp are shown in Figure 9. The therapeutic radiation for psoriasis lies principally within the UVB waveband (Parrish & Jaenicke, 1981), and the cumulative UVB dose required for clearing
Fig. 9. Spectral power distributions of different types of phototherapy lamp (Diffey, 1990b). Type A: unfiltered medium-pressure mercury arc lamp; type B: optically filtered iron iodide lamp; type C: fluorescent sunlamp (Philips TL12); type D: Wolff Helarium lamp; type E: narrow-band UVB fluorescent lamp (Philips TL01)
Psoriasis is typically 100–200 MED (Diffey, 1990a), usually delivered over a course consisting of 10–30 exposures over 3–10 weeks (van der Leun & van Weelden, 1986).

Annual doses received by 90% of patients given UVB phototherapy for psoriasis range from about 60 to 670 MED, with a typical dose in a single course being between 200 and 300 MED (Slaper, 1987).

Psoralen photochemotherapy (see also IARC, 1980, 1986a, 1987b): This form of treatment, known colloquially as PUVA, involves the combination of photoactive drugs, psoralens (P), with long-wave UVR (UVA) to produce a beneficial effect. Psoralen photochemotherapy has been used to treat many skin disease in the past decade, although its principal success has been in the management of psoriasis (Parrish et al., 1974), a disorder characterized by an accelerated cell cycle and rate of DNA synthesis. Psoralens may be applied to the skin either topically or systemically; the latter route is generally preferred, and the psoralen most commonly administered is 8-methoxypsoralen. The patient is usually exposed to UVA radiation from banks of fluorescent lamps with the spectral power distribution shown in Figure 8a. Values for UVA irradiance in clinical treatment cubicles have been found to range from 16 to 140 W/m² (Diffey et al., 1980; Diffey, 1990b), although an irradiance of 80 W/m² is probably typical. The UVA dose per treatment session is usually in the range 1–10 J/cm² (Diffey et al., 1980).

Generally, approximately 25 treatments over a period of 6–12 weeks, with a cumulative UVA dose of 100–250 J/cm², are required to clear psoriatic lesions (Melski et al., 1977; Henseler et al., 1981). PUVA therapy is not a cure for psoriasis, and maintenance therapy is often needed at intervals of between once a week to once a month to prevent relapse (Gupta & Anderson, 1987).

Neonatal phototherapy for hyperbilirubinaemia: Phototherapy is sometimes used in the treatment of neonatal jaundice or hyperbilirubinaemia. The preferred method of treatment is to irradiate the baby for several hours a day for up to one week with visible light, particularly blue light (Sisson & Vogl, 1982). The lamps used for phototherapy, although intended to emit only visible light, may also have a UV component: One commercial neonatal phototherapy unit was found to emit not only visible light and UVA but also radiation at wavelengths down to 265 nm (Diffey & Langley, 1986).

Fluorescence in cutaneous and oral diagnosis: Wood’s light—a source of UVA obtained by filtering optically a mercury arc lamp with ‘blackglass’—is used by dermatologists as a diagnostic aid in skin conditions that produce fluorescence (Caplan, 1967; Diffey, 1990a). As irradiation of the oral cavity with a Wood’s lamp can produce fluorescence under certain conditions, this has been used in the diagnosis of various dental disorders, such as early dental caries, the incorporation of tetracycline into bone and teeth, dental plaque and calculus (Hefferren et al., 1971).

Polymerization of dental resins: Pits and fissures in teeth have been treated using an adhesive resin polymerized with UVA. The resin is applied with a fine brush to the surfaces to be treated and is hardened by exposure to UVA radiation at a minimal irradiance of 100 W/m² for 30 s or so (Eriksen et al., 1987; Diffey, 1990a).
(iii) **Occupational exposures**

Artificial sources of UVR are used in many different ways in the working environment. In some cases, the UV source is well contained within an enclosure and, under normal circumstances, presents no risk of exposure to personnel. In other applications of UVR, it is inevitable that workers are exposed to some radiation, normally by reflection or scattering from adjacent surfaces. Occupational exposure to UVR is also a consequence of exposure to general lighting in the workplace.

Industrial photoprocesses: Many industrial processes involve a photochemical component. The large-scale nature of these processes often necessitates the use of high-power (several kilowatts) lamps such as high-pressure metal halide lamps (Diffey, 1990a).

The principal industrial applications of photopolymerization include the curing of protective coatings and inks and photoresists for printed circuit boards. The curing of printing inks by exposure to UVR is now widespread; as the cure takes only a fraction of a second, UV drying units can be installed between printing stations on a multicolour line, so that each colour is dried before the next is applied. Another major use of UV curing has been for metal decorating in the packaging industry (Phillips, 1983). UVA is also used to inspect printed circuit boards and integrated circuits in the electronics industry (Pauw & Meulemans, 1987).

Artificial sources of UVR are used to test the weathering capability of materials such as polymers. Xenon-arc lamps are often the light source because their emission spectra is similar to the spectrum of terrestrial sunlight, although some commercial weathering chambers incorporate carbon-arc lamps, high-pressure metal halide lamps or fluorescent sunlamps (Davis & Sims, 1983).

Sterilization and disinfection: Radiation with wavelengths in the range 260–265 nm is the most effective for this use, since it corresponds to a maximum in the DNA absorption spectrum. Low-pressure mercury discharge tubes are thus often used as the radiation source, as more than 90% of the radiated energy lies in the 254 nm line. These lamps are often referred to as ‘germicidal lamps’, ‘bactericidal lamps’ or simply ‘UVC lamps’ (Diffey, 1990a).

UVC radiation has been used to disinfect sewage effluents, drinking-water, water for the cosmetics industry and swimming pools. Germicidal lamps are sometimes used inside microbiological safety cabinets to inactivate airborne and surface microorganisms (Diffey, 1990a). The combination of UVR and ozone has a very powerful oxidizing action and can reduce the organic content of water to extremely low levels (Phillips, 1983).

Welding (see also IARC, 1990): Welding equipment falls into two broad categories: gas welding and electric arc welding. Only the latter process produces significant levels of UVR, the quality and quantity of which depend primarily on the arc current, shielding gas and metals being welded (Sliney & Wolbarsht, 1980).

Welders are almost certainly the largest occupational group with exposure to artificial sources of UVR. It has been estimated (Emmett & Horstman, 1976) that there may be as many as half a million welders in the USA alone. The levels of UV irradiance around electric arc welding equipment are high; effective irradiance (relative to the action spectrum of the American Conference of Governmental Industrial Hygienists) at 1 m at an arc current of 400 A ranged from 1 to 50 W/m² (Table 6), and the unweighted UVA irradiance ranged from 3 to
70 W/m², depending on the type of welding and the metal being welded (Cox, 1987; Mariutti & Matzeu, 1987). It is not surprising therefore that most welders at some time or another experience 'arc eye' or 'welder's flash' (photokeratitis) and skin erythema. The effective irradiance at 0.3 m from many types of electric welding arcs operating at 150 A is such that the maximum permissible exposure time for an 8-h working period on unprotected eyes and skin varies from a few tenths of a second to about 10 s, depending on the type of welding process and the material used (Cox, 1987).

Table 6. Limits of exposure to ultraviolet radiation and radiation effectiveness

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Exposure limit (J/m²)</th>
<th>Relative spectral effectiveness (S₅₅)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>2500</td>
<td>0.012</td>
</tr>
<tr>
<td>190</td>
<td>1600</td>
<td>0.019</td>
</tr>
<tr>
<td>200</td>
<td>1000</td>
<td>0.030</td>
</tr>
<tr>
<td>205</td>
<td>590</td>
<td>0.051</td>
</tr>
<tr>
<td>210</td>
<td>400</td>
<td>0.075</td>
</tr>
<tr>
<td>215</td>
<td>320</td>
<td>0.095</td>
</tr>
<tr>
<td>220</td>
<td>250</td>
<td>0.120</td>
</tr>
<tr>
<td>225</td>
<td>200</td>
<td>0.150</td>
</tr>
<tr>
<td>230</td>
<td>160</td>
<td>0.190</td>
</tr>
<tr>
<td>235</td>
<td>130</td>
<td>0.240</td>
</tr>
<tr>
<td>240</td>
<td>100</td>
<td>0.300</td>
</tr>
<tr>
<td>245</td>
<td>83</td>
<td>0.360</td>
</tr>
<tr>
<td>250</td>
<td>70</td>
<td>0.430</td>
</tr>
<tr>
<td>254b</td>
<td>60</td>
<td>0.500</td>
</tr>
<tr>
<td>255</td>
<td>58</td>
<td>0.520</td>
</tr>
<tr>
<td>260</td>
<td>46</td>
<td>0.650</td>
</tr>
<tr>
<td>265</td>
<td>37</td>
<td>0.810</td>
</tr>
<tr>
<td>270</td>
<td>30</td>
<td>1.000</td>
</tr>
<tr>
<td>275</td>
<td>31</td>
<td>0.960</td>
</tr>
<tr>
<td>280b</td>
<td>34</td>
<td>0.880</td>
</tr>
<tr>
<td>285</td>
<td>39</td>
<td>0.770</td>
</tr>
<tr>
<td>290</td>
<td>47</td>
<td>0.640</td>
</tr>
<tr>
<td>295</td>
<td>56</td>
<td>0.540</td>
</tr>
<tr>
<td>297b</td>
<td>65</td>
<td>0.460</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>0.300</td>
</tr>
<tr>
<td>303b</td>
<td>250</td>
<td>0.120</td>
</tr>
<tr>
<td>305</td>
<td>500</td>
<td>0.060</td>
</tr>
<tr>
<td>308</td>
<td>1200</td>
<td>0.026</td>
</tr>
<tr>
<td>310</td>
<td>2000</td>
<td>0.015</td>
</tr>
<tr>
<td>313b</td>
<td>5000</td>
<td>0.006</td>
</tr>
<tr>
<td>315</td>
<td>1.0 \times 10⁴</td>
<td>0.003</td>
</tr>
<tr>
<td>316</td>
<td>1.3 \times 10⁴</td>
<td>0.0024</td>
</tr>
<tr>
<td>317</td>
<td>1.5 \times 10⁴</td>
<td>0.0020</td>
</tr>
<tr>
<td>318</td>
<td>1.9 \times 10⁴</td>
<td>0.0016</td>
</tr>
<tr>
<td>319</td>
<td>2.5 \times 10⁴</td>
<td>0.0012</td>
</tr>
</tbody>
</table>
Table 6 (contd)

| Wavelength (nm) | Exposure limit (J/m²) | Relative spectral effectiveness (\(S_a\))
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>(2.9 \times 10^4)</td>
<td>0.0010</td>
</tr>
<tr>
<td>322</td>
<td>(4.5 \times 10^4)</td>
<td>0.00067</td>
</tr>
<tr>
<td>323</td>
<td>(5.6 \times 10^4)</td>
<td>0.00054</td>
</tr>
<tr>
<td>325</td>
<td>(6.0 \times 10^4)</td>
<td>0.00050</td>
</tr>
<tr>
<td>328</td>
<td>(6.8 \times 10^4)</td>
<td>0.00044</td>
</tr>
<tr>
<td>330</td>
<td>(7.3 \times 10^4)</td>
<td>0.00041</td>
</tr>
<tr>
<td>333</td>
<td>(8.1 \times 10^4)</td>
<td>0.00037</td>
</tr>
<tr>
<td>335</td>
<td>(8.8 \times 10^4)</td>
<td>0.00034</td>
</tr>
<tr>
<td>340</td>
<td>(1.1 \times 10^5)</td>
<td>0.00028</td>
</tr>
<tr>
<td>345</td>
<td>(1.3 \times 10^5)</td>
<td>0.00024</td>
</tr>
<tr>
<td>350</td>
<td>(1.5 \times 10^5)</td>
<td>0.00020</td>
</tr>
<tr>
<td>355</td>
<td>(1.9 \times 10^5)</td>
<td>0.00016</td>
</tr>
<tr>
<td>360</td>
<td>(2.3 \times 10^5)</td>
<td>0.00013</td>
</tr>
<tr>
<td>365b</td>
<td>(2.7 \times 10^5)</td>
<td>0.00011</td>
</tr>
<tr>
<td>370</td>
<td>(3.2 \times 10^5)</td>
<td>0.000093</td>
</tr>
<tr>
<td>375</td>
<td>(3.9 \times 10^5)</td>
<td>0.000077</td>
</tr>
<tr>
<td>380</td>
<td>(4.7 \times 10^5)</td>
<td>0.000064</td>
</tr>
<tr>
<td>385</td>
<td>(5.7 \times 10^5)</td>
<td>0.000053</td>
</tr>
<tr>
<td>390</td>
<td>(6.8 \times 10^5)</td>
<td>0.000044</td>
</tr>
<tr>
<td>395</td>
<td>(8.3 \times 10^5)</td>
<td>0.000036</td>
</tr>
<tr>
<td>400</td>
<td>(1.5 \times 10^6)</td>
<td>0.000030</td>
</tr>
</tbody>
</table>

From American Conference of Governmental Industrial Hygienists (1991); wavelengths chosen are representative, and other values should be interpolated at intermediate wavelengths.

\(^a\)For explanation, see pp. 46-47

\(^b\)Emission lines of a mercury discharge spectrum

In a survey of electric arc welders in Denmark, 65% of those questioned had experienced erythema; however, as no indication of the frequency of skin reactions was reported, it is not possible to estimate annual exposure (Eriksen, 1987). Monitoring of the exposure to UVR of non-welders working in the vicinity of electric arc welding apparatuses showed that their daily exposure dose exceeded the maximum permissible exposure limits by almost an order of magnitude (Barth et al., 1990).

Phototherapy: Although there is a trend to the use of enclosed treatment cubicles, some of the lamps used to treat skin disease (see the section on medical and dental applications) are unenclosed, emit high levels of UVR and can present a marked hazard to staff; at 1 m from these lamps, the recommended 8-h occupational exposure limits can be exceeded in less than 2 min (Diffey & Langley, 1986).

In a study of the exposure of staff in hospital phototherapy departments (Larkö & Diffey, 1986), annual exposure to UVR could be estimated from the number of occasions per year on which staff had experienced at least minimal erythema (Diffey, 1989b). Estimated annual
EXPOSURE DATA

occupational exposures to UVR were 15, 92 and 200 MED, corresponding to a frequency of erythema of once per year, once per month and once per week, respectively.

Operating theatres: UVC lamps have been used since the 1930s to decrease the levels of airborne bacteria in operating theatres (Berg, 1987). The technique requires complete protection of the eyes and skin of staff and patients; for this and other reasons, filtered air units are often preferred.

Research laboratories: Sources of UVR are used by most experimental scientists engaged in aspects of photobiology and photochemistry and in molecular biology. These applications, in which the effect of UV irradiation on biological and chemical species is of primary interest to the researcher, can be differentiated from UV fluorescence by absorption techniques where the effect is of secondary importance (Diffey, 1990a).

UV photography: There are two distinct forms of UV photography: reflected or transmitted UV photography and UV fluorescence photography. In both applications, the effective radiation lies within the UVA waveband (Lunnon, 1984).

UV lasers: High-power lasers which emit in the UV region, used in nuclear and other research laboratories, are far less common than those that emit in the visible or infrared regions of the electromagnetic spectrum.

Nitrogen lasers emit at a wavelength of 337 nm (Phillips, 1983), and instruments with a peak power output of up to 2.3 MW per pulse are available. Nitrogen lasers can be used in conjunction with fluorescent dyes to produce spectral emissions of 360–900 nm, with a power pulse of 200–480 kW. If frequency doubling crystals are used in conjunction with a nitrogen laser, UV emissions down to 260 nm are possible.

An alternative laser source of UVR is the excimer laser. (The term ‘excimer’ denotes a homonuclear molecule which is bound in an electronically excited state but is dissociative in the ground state [Phillips, 1983].) The wavelength of the pulsed UVR from this type of laser depends on the excimer molecules, such as ArF, F₂, XeCl and KrF, which emit at 193, 157, 308 and 248 nm, respectively (Phillips, 1983; Bos & de Haas, 1987). On the basis of worst-case assumptions, the estimated annual risk for skin cancer for workers exposed to UV lasers in medical applications is equivalent to about one additional day of sunbathing, and that for workers exposed to UV lasers in laboratories is comparable to the risk for outdoor workers (Sterenborg et al., 1991).

Quality assurance in the food industry: Many contaminants of food products can be detected by UV fluorescence techniques. For example, the bacterium Pseudomonas aeruginosa, which causes rot in eggs, meat and fish, can be detected by its yellow-green fluorescence under UVA irradiation. One of the longest established uses of UVA fluorescence in public health is to demonstrate contamination with rodent urine, which is highly fluorescent (Ultra-Violet Products, Inc., 1977).

Insect traps: Many flying insects are attracted by UVA radiation, particularly in the region around 350 nm. This phenomenon is the principle of electronic insect traps, in which a UVA fluorescent lamp is mounted in a unit containing a high-voltage grid. The insect, attracted by the UVA lamp, flies into the unit and is electrocuted in the air gap between the high-voltage grid and a grounded metal screen. Such units are commonly found in areas where food is prepared and sold to the public (Diffey, 1990a).

Sunbed salons and shops: The continuing popularity of UVA sunbeds and suncanopies for cosmetic tanning has resulted in the establishment of a large number of salons and shops selling sunbeds for use at home. Some shops may have 20 or more UVA tanning appliances, all switched on, thus exposing members of the public and staff to high levels (> 20 W/m²) of UVA radiation (Diffey, 1990a).

Discotheques: UVA ‘blacklight’ lamps are sometimes used in discotheques to induce fluorescence in the skin and clothing of dancers. The levels of UVA emitted are usually low (< 10 W/m²) (Diffey, 1990a).

Offices: Signatures can be verified by exposing a signature obtained with colourless ink to UVA radiation, under which it fluoresces. UVA exposure of office staff is normally to hands, and irradiance is low (< 10 W/m²) (Diffey, 1990a).

(iv) **General lighting**

Fluorescent lamps used for general lighting in offices and factories emit small quantities of both UVA and UVB. A UVA irradiance of 30 mW/m² (Diffey, 1990a) and a UVB irradiance of 3 mW/m² (McKinley & Whillock, 1987) were found for bare fluorescent lamps with a typical illuminance of 500 lux. These UV levels give rise to an annual exposure of indoor workers to no more than 5 MED, and this dose can be reduced appreciably by the use of plastic diffusers (McKinlay & Whillock, 1987). A study of the personal doses of UVR received by workers in the car manufacturing industry who were engaged in inspecting paintwork of new cars under bright fluorescent lamps indicated a similar annual exposure (Diffey et al., 1986). Most plastic diffusers reduce erythemally effective irradiance to 0.2% or less of that of the bare lamp. An exception is clear acrylic diffusers, which absorb only about 20% of the erythemally effective radiation. The absorption of UVA radiation by diffusers is less effective, transmission ranging from 1% for opal polycarbonate to 74% for clear acrylic (McKinlay & Whillock, 1987). Spectroradiometric measurements of the UV levels from indoor fluorescent lamps carried out in the USA, however, indicated much higher annual doses for people exposed occupationally for 2000 h per year: The annual estimated exposure dose ranged from 8 to 30 MED for an illuminance level of 500 lux from bare lamps (Cole et al., 1985).

Desk-top lights which incorporate tungsten–halogen (quartz) lamps may result in exposure to UVR of the hands and arms, if the lamps are used in excess of recommended occupational exposure levels (McKinlay et al., 1989). Experimental studies have shown that erythema can be induced in susceptible individuals after a 15-min exposure at 10 cm from a 100-W tungsten–halogen source, principally by the UVB component of the emission (Cesarini & Muel, 1989). Tungsten–halogen lamps are also used for general lighting (e.g., spotlights, indirect lighting, floor lamps) in some countries.

(c) **Regulations and guidelines**

(i) **Cosmetic use**

The most comprehensive guidelines for the use of sunlamps and sunbeds in cosmetic tanning are those published by the International Electrotechnical Commission (1987, 1989). The guidelines classify tanning appliances into one of four types according to the effective irradiance at short (λ ≤ 320 nm) and long (320 < λ ≤ 400 nm) UV wavelengths (Table 7).
Table 7. Classification of tanning appliances

<table>
<thead>
<tr>
<th>Type</th>
<th>Effective irradiance (W/m²)</th>
<th>λ ≤ 320 nm</th>
<th>320 nm < λ ≤ 400 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 0.0005</td>
<td>≥ 0.15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0005–0.15</td>
<td>≥ 0.15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>< 0.15</td>
<td>< 0.15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>≥ 0.1</td>
<td>< 0.15</td>
<td></td>
</tr>
</tbody>
</table>

Effective radiance is defined as:

\[
\sum_{\lambda} E_\lambda \times S_\lambda \times \Delta \lambda,
\]

where \(E_\lambda \) is the spectral irradiance (W/m² x nm) at wavelength \(\lambda \) (nm) at the shortest recommended exposure distance; \(\Delta \lambda \) is the wavelength interval used in the summation; and \(S_\lambda \) is the relative erythemal effectiveness recently adopted by the Commission Internationale de l’Eclairage (McKinlay & Diffey, 1987), specified as shown in Table 8. The guidelines recommend that the exposure time for the first session on untanned skin should correspond to an effective dose not exceeding 100 J/m²; this is approximately equivalent to 1 MED for subjects with sun-reactive skin type 1. The annual exposure should not exceed an effective dose of 25 kJ/m² (International Electrotechnical Commission, 1989).

Table 8. Specifications of relative erythemal effectiveness

<table>
<thead>
<tr>
<th>Wavelength (λ; nm)</th>
<th>Relative erythemal effectiveness ((S_\lambda)) (weighting factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda < 298)</td>
<td>1</td>
</tr>
<tr>
<td>298 < (\lambda < 328)</td>
<td>(10^{0.094(298-\lambda)})</td>
</tr>
<tr>
<td>328 < (\lambda \leq 400)</td>
<td>(10^{0.015(139-\lambda)})</td>
</tr>
</tbody>
</table>

Although these guidelines form the basis of several national standards on sunlamp and sunbed use, it should be noted that variations exist; for example, in the Netherlands, Norway and Sweden, certain UV appliances are not permitted. Regulations concerning the use of tanning appliances are in force in only a few countries, but many others have published advice on sunbed use, including information on adverse effects, as well as guidelines on manufacturing standards.

(ii) Occupational exposure

Guidance on the maximal limits of exposure to UVR as a consequence of occupation is given by the International Non-ionizing Radiation Committee of the International Radiation
Protection Association. These exposure limits, which apply only to incoherent (i.e., non-
laser) sources, represent conditions under which it is expected that nearly all individuals may
be repeatedly exposed without adverse effects and are below levels which would be used for
medical or cosmetic exposure to UVR. The limits for occupational exposure to UVR
incident upon the skin or eye were considered separately for the UVA spectral region
(315–400 nm) and the actinic UV spectral region (UVC and UVB, 180–315 nm). In 1984, the
limit provided an equal spectral weighting between 315 and 400 nm, a maximal 1000-s
radiant exposure of 10 KJ/m² and a maximal irradiance of 10 W/m² for longer periods (International Non-ionizing Radiation Committee of the International Radiation Protection Association, 1985). Studies of skin and ocular injury resulting from exposure to UVA led the
Committee to issue revised exposure limits in 1988: For the UVA spectral region (315–400
nm), the total radiant exposure incident upon the unprotected eye should not exceed 1.0
J/cm² (10 KJ/m²) within an 8-h period, and the total 8-h radiant exposure incident upon the
unprotected skin should not exceed the values given in Table 6. Values for the relative
spectral effectiveness Sλ are given up to 400 nm to expand the action spectrum into the UVA
region for determining the exposure limit for skin exposure. For the actinic UV spectral
region (UVC and UVB, 180–315 nm), the radiant exposure incident upon the unprotected
skin or eye within an 8-h period should not exceed the values given in Table 6 (International Non-ionizing Radiation Committee of the International Radiation Protection Association, 1989).

The effective irradiance \(E_{\text{eff}}\) in W/m² of a broad-band source weighted against the
peak of the spectral effectiveness curve (270 nm) is determined according to the formula:

\[
E_{\text{eff}} = \sum E_\lambda \times S_\lambda \times \Delta_\lambda,
\]

where \(E_\lambda\) is the spectral irradiance (W/m² × nm) from measurements, \(S_\lambda\) is the relative
spectral effectiveness (Table 6) and \(\Delta_\lambda\) is the band-width (nm) of the calculation or
measurement interval (International Non-ionizing Radiation Committee of the Interna-
tional Radiation Protection Association, 1985).

The maximal permissible exposure time in seconds for exposure to UVR incident on the
unprotected skin or eye within an 8-h period is computed by dividing 30 J/m² by the value of
\(E_{\text{eff}}\) in W/m² (American Conference of Governmental Industrial Hygienists, 1991). A worker
receiving the maximal permissible exposure of 30 J/m² per 8-h day will, in the course of a
working year, have a cumulative dose of 60–70 MED (Diffey, 1988), a value comparable with
the natural exposure of non-occupationally exposed indoor workers (Diffey, 1990a).

Occupational exposure limits to lasers were also defined by the International Non-
Ionizing Radiation Committee of the International Radiation Protection Association in
1989, at 3 mJ/cm² and 40 mJ/cm² over 8 h for argon–fluoride and xenon–chloride lasers,
respectively (Sliney, 1990).
2. Studies of Cancer in Humans

2.1 Solar radiation

2.1.1 Nonmelanocytic skin cancer

Nonmelanocytic skin cancer is classified into two major histological types: basal-cell carcinoma and squamous-cell carcinoma. Basal-cell carcinoma is the commoner type in white populations. No information was available to the Working Group on other types of nonmelanocytic skin cancer.

(a) Case reports

In general, case reports were not considered, owing to the availability of more informative data.

(i) Studies of xeroderma pigmentosum patients

Xeroderma pigmentosum is a rare autosomal-recessive genetic disease in which there is an excision repair defect, as observed in cultured skin fibroblasts damaged by UVR (Cleaver, 1968). Patients display cellular and clinical hypersensitivity to UVR (Kraemer, 1980). The disease is present in about one in 250,000 people in the USA and Europe (Cleaver & Kraemer, 1989), and as many as 1 in 100,000 (Takebe et al., 1987) or even 1 in 40,000 (Cleaver & Kraemer, 1989) people may be affected in Japan.

In a survey of 830 cases located through published case reports (Kraemer et al., 1987), 45% had malignant skin neoplasms. Most of the patients were young, and the median age of development of the first skin cancer in the 186 patients for whom information was available was eight years; this observation presumably represents a substantial excess over the expected number. Only 259 neoplasms were specifically categorized as basal- or squamous-cell carcinoma in the published reports. Of these, 97% were on constantly exposed sites (face, head and neck) by comparison with 80% of similar tumours in the US general population. [The Working Group recognized that data collected from previously published case reports is not uniform and may not be typical of a true incidence or prevalence series.]

(ii) Studies of transplant recipients

Australian renal transplant recipients were reported to have an increased risk for nonmelanocytic skin cancer (Hardie et al., 1980). Among 875 male and 669 female Australasian recipients, aged 35–64, 47 squamous-cell carcinomas and 27 basal-cell carcinomas were observed among males and 27 squamous-cell and 15 basal-cell carcinomas were observed among females (Kinlen et al., 1979). The rates/10^5 person-years for squamous-cell carcinoma were 2680 in males and 1710 in females, or 3.0 and 5.9 times the rates observed among residents of the same age distribution surveyed in Geraldton, Western Australia (Kricker et al., 1990). For basal-cell carcinoma, the rates for 1540 (males) and 940 (females) were 1.154 and 1.150 times the Geraldton rates, respectively.
By February 1980, a registry in Denver, Colorado (USA), had received data on 906 organ transplant recipients who had developed 959 types of cancer: 42% arose in the skin, of which 47% were squamous-cell carcinomas (Penn, 1980). While several studies from areas with lower solar radiation are available (Boyle et al., 1984), neither singly nor collectively do they contain enough observations to permit a comparable calculation.

(b) Descriptive studies

Nonmelanocytic skin cancer is often not recorded in cancer registries (e.g., in the USA and in most parts of Australia), and when it is registered case ascertainment is likely to be incomplete since many patients are treated in consulting rooms, frequently without histological verification (Doll et al., 1970). Thus, descriptive studies of the incidence of nonmelanocytic skin cancer can be difficult to perform because of the absence of routinely collected data or difficult to interpret because of incomplete registration. Studies in Australia and the USA have relied upon special surveys, while in the United Kingdom and the Nordic countries data from cancer registries have been used. Studies of mortality rates are also difficult to interpret because nonmelanocytic skin cancer is rarely fatal, and many deaths are incorrectly attributed to skin cancer (Muir et al., 1987).

A number of features of the occurrence of nonmelanocytic skin cancer as revealed by descriptive studies have been taken as evidence that exposure to the sun is a major cause of the disease. These include features presumed to be related to sun exposure such as sex, anatomical site, latitude of residence (or annual dose of UVB radiation), migration from places of low insolation to places of high insolation, occupation and features related to sensitivity to the sun such as race (i.e., degree of skin pigmentation).

(i) Host factors

The occurrence of nonmelanocytic skin cancer according to host factors such as race provides indirect evidence that sunlight is a cause. In most white populations, nonmelanocytic skin cancer occurs more commonly in men than in women (Muir et al., 1987). The highest incidence rates have been recorded among Australians, who are largely of British (Celtic) descent (Giles et al., 1988). Populations with greater skin pigmentation have low rates of nonmelanocytic skin cancer, for instance, in South Africa (Oettlè, 1963) and Singapore (Shanmugaratnam et al., 1983).

Albinism is an inherited disorder of melanin metabolism, with a decrease or complete absence of melanin. Large numbers of skin cancers (mostly squamous-cell carcinomas) have been reported in albinos (Luande et al., 1985; Kromberg et al., 1989).

(ii) Anatomical distribution

The majority of cases of skin cancer recorded in cancer registries (Haenszel, 1963 [USA]; Whitaker et al., 1979 [United Kingdom]; Swerdlow, 1985 [United Kingdom]; Levi et al., 1988 [Switzerland]; Østerlind et al., 1988a [Denmark]; Moan et al., 1989 [Norway]) and in special surveys in the USA (Haenszel, 1963; Scotto et al., 1983) occurred on the head and neck. In contrast, in two studies in Australia—one of incidence (Giles et al., 1988) and the other of prevalence (Kricker et al., 1990)—the proportions of cancers on the head and neck were lower. [The Working Group noted that the contrasting results may be due to time differences.] In the incidence survey, 43% of squamous-cell carcinomas and 66% of
basal-cell carcinomas were on the head and neck. In the prevalence survey, about one-third of all basal-cell carcinomas were on the head and neck, whereas the trunk accounted for about half of these lesions. The density of tumours was five times greater in men and eight times greater in women on usually exposed sites than on sites which were sometimes exposed. Squamous-cell carcinomas occurred almost exclusively on exposed sites. The site distributions of both types of nonmelanocytic skin type are generally similar in the two sexes (Osterlind et al., 1988a; Moan et al., 1989; Kricker et al., 1990).

A distinctive feature of the site distribution of basal-cell carcinoma is a virtual absence on the dorsa of the hands and infrequent occurrence on the forearms, compared with the distribution of squamous-cell carcinoma (Haenszel, 1963; Silverstone & Gordon, 1966; Levi et al., 1988; Magnus, 1991). Basal-cell carcinoma also occurs frequently on parts of the face that receive comparatively little sun exposure (Urbach et al., 1966).

(The Working Group noted that cancers on the head and neck may be more likely to be diagnosed than cancers at other sites.)

(iii) Geographical variation

Nonmelanocytic skin cancer incidence and mortality have long been known to increase with increasing proximity to the equator. Gordon and Silverstone (1976) demonstrated a negative correlation between the incidence of nonmelanocytic skin cancer in various countries and latitudes by tabulating the incidence according to latitudinal zones. Much of the early evidence came from surveys conducted in the USA. In the first of these, Dorn (1944a,b,c) reported the results of the US First National Cancer Survey conducted in 10 urban areas in 1937–38. [Nonmelanocytic] skin cancer incidence was greater among whites living in the south than in the north of the country. Blum (1948) subsequently reanalysed these data, substituting latitude for place of residence, and showed a strong inverse relationship between incidence of mostly nonmelanocytic skin cancer and latitude. No other cancer, with the exception of the buccal cavity (including the lip), showed a similar latitude gradient.

Auerbach (1961), using data from the US Second National Cancer Survey conducted in 1947–48 in the same areas as the previous survey, calculated that the age-adjusted rates for skin cancer doubled for each 3°48′ (approximately 265 miles) of latitude towards the equator; similar gradients were seen for men and women and in all age groups. Haenszel (1963) reanalysed data from this survey for four southern and four northern cities. The inverse gradient with latitude was present for both basal-cell and squamous-cell carcinoma. In addition, there was some evidence that the gradient was strongest for head, neck and upper limbs (sites which are usually exposed).

A similar latitude gradient was seen in the US Third National Cancer Survey (Scotto et al., 1974). Inverse latitude gradients have also been reported in Australia (Silverstone & Gordon, 1966; Giles et al., 1988) and in the Nordic countries (Teppo et al., 1980; Moan et al., 1989; Magnus, 1991).

Several authors have correlated nonmelanocytic skin cancer incidence (or mortality) with estimates of UVR. Green et al. (1976) reported a positive correlation between estimates of annual UV dose and of incidence rates in the USA, the United Kingdom, Canada and Australia. Estimates of UV dose were derived from models relating latitudinal and seasonal ozone distributions, adjusted for cloud cover. [The Working Group noted that no allowance
was made in the analysis for different methods of case ascertainment. It is not clear how well
the predicted values were correlated with actual levels of UVR.)

A positive correlation, stated to be stronger than that for latitude, was seen between
UVR, as measured by Robertson–Berger meters, and the incidence of nonmelanocytic skin
cancer in four cities in the US Third National Cancer Survey (Scotto et al., 1982). Scotto et al.
(1983) examined incidence data collected in eight cities in 1977–78 and again showed an
inverse relationship with latitude and a positive correlation with measurements of UVR. The
gradient was steeper for squamous-cell than for basal-cell carcinoma.

Moan et al. (1989) examined nonmelanocytic skin cancer incidence in six regions of
Norway from 1976 to 1985, excluding the area around Oslo to reduce bias due to possible
differences in reporting and diagnosis. Two measures of UVR, one weighted according to the
action spectrum for erythema and the other according to the action spectrum for mutagenesis
in cells in the basal layer of the skin, were derived from atmospheric models. Similar, positive
relationships between UVR and nonmelanocytic skin cancer incidence were obtained with
each method.

Elwood et al. (1974) conducted a study of mortality from nonmelanocytic skin cancer in
the contiguous states of the USA and in all of the provinces of Canada in 1950–67. The
correlation between latitude and mortality was as strong as that between mortality and an
index of UVR derived from a model relating eryhemal dose according to latitude with
adjustments for cloud cover.

(iv) Migration

Studies of migrants to Australia (and other countries with high exposure to the sun) offer
the opportunity to examine, indirectly, the effect of exposure to the sun. Most migrants to
Australia come from higher latitudes which have lower levels of exposure to the sun than
Australia. The effect of exposure to the sun is most readily examined in migrants from the
British Isles to Australia, from whom most Australians are descended.

Armstrong et al. (1983) found that the age-adjusted mortality rate among men born in
England or Wales was 0.55 (95% confidence interval (CI), 0.43–0.71) times that in
Australian-born men. There was little evidence that rates in migrants increased with duration
of residence in Australia, although the numbers of deaths were small and the rates unstable.

Giles et al. (1988) found age-adjusted incidence rates of 402 per 100 000 person-years
among immigrants from the British Isles and 936 in the Australian-born population.

(v) Occupation

Death certificates for 1911–44 in England and Wales were used in an analysis of cancer
of the skin, excluding melanomas, in male agricultural workers, miners and quarriers and
professionals (Atkin et al., 1949). During part of the period (1911–16), cancers of the penis,
scrotum and skin were classified together, and the numbers of cancers of the skin alone were
estimated from the proportions occurring in the later period. The standardized mortality
ratios (SMRs) were greater for those engaged in agriculture (142.4 [137.4–147.6]) than for
those in mining (94.4 [88.8–100.3]), and lowest of all for professionals (47.5 [42.6–52.9]).

Whitaker et al. (1979) examined occupations among cases of squamous-cell carcinoma
reported to the Manchester Regional Cancer Registry, United Kingdom, in 1967–69. The
occupations of 23% of cases were not ascertained. In men, standardized registration ratios
SRRs were elevated for textile workers (238; \(p < 0.001 \)) and farmers (243; \(p < 0.001 \)). The SRR was also high for female farmers (690; \(p < 0.001 \)). Male fishermen, chemical workers and paper/printing workers had high SRRs for squamous-cell carcinoma of the arm, and building workers for squamous-cell carcinoma of the ear.

The association between occupation and nonmelanocytic skin cancer was examined in England and Wales in 1970–75 in a 10% sample of all male incident cases for which occupation was recorded (Beral & Robinson, 1981). Individuals were assigned, on the basis of stated occupation, to one of three groups: outdoor workers, indoor office workers and other indoor workers, according to the classification of occupations of the Office of Population Censuses and Surveys. The SRRs for men aged 15–64 were 110 [95% CI, 109–116] for outdoor work, 97 [92–103] for office work and 92 [86–89] for other indoor work. Since place of work may be confounded with social class, the analyses were repeated for men aged 15–64 years in social class III; the SRRs were 112 [102–122] for outdoor work, 111 [100–123] for office work and 85 [78–92] for other indoor work.

Vågerö et al. (1986) linked cancer incidence data in Sweden from 1961 to 1979 with census data from 1960 to determine the occupations of cases of nonmelanocytic skin cancer. Occupations were classified into three main groups: office workers, other indoor workers and outdoor workers. SRRs standardized for age, county of residence and social class, were slightly higher for outdoor workers (106; 95% CI, 101–112) than for office workers (103; 96–110) and other indoor workers (95; 91–100). The authors noted that registration may have been more complete among high socioeconomic groups.

(c) Cross-sectional studies

Design features of cross-sectional studies of exposure to the sun are summarized in Table 9, and the results are shown in Table 10.

A population-based survey of the prevalence of nonmelanocytic skin cancer [types not separated] was conducted in County Galway, Ireland (O’Beirn et al., 1970). Exposed areas of skin were examined for the presence of cancers. In the 26 cases found, there was no significant association with frequent severe sunburn for basal-cell or squamous-cell skin cancer; among males, there was a positive relationship between cumulative hours of exposure to sunlight and the prevalence of nonmelanocytic skin cancer.

Silverstone and Gordon (1966) and Silverstone and Searle (1970) reported the results of three surveys in Queensland, Australia. Exposed areas of the skin were examined, and subjects were asked to report previously treated nonmelanocytic skin cancer [types not separated]. Women performing home duties were classified as indoor workers. Outdoor occupation showed a weakly positive association with past and present incidence in men and a negative association in women.

Holman et al. (1984a) conducted a population-based survey of 1216 subjects in western Australia. After controlling for age, cutaneous sun damage (as assessed by microtopography) was strongly related to a past history of nonmelanocytic skin cancer.

Engel et al. (1988) analysed data on basal-cell epithelioma (carcinoma) from the First National Health and Nutrition Examination Survey in the USA (1971–74). Dermatologists diagnosed skin cancers and assessed actinic skin (solar) damage, but histological confirmation of the diagnosis was not obtained routinely. Strong associations between the
prevalence of basal-cell epithelioma and solar skin damage were seen in both men and
women.

Green et al. (1988a) conducted a survey of the prevalence of nonmelanocytic skin cancer
(types not separated for calculation of RR) in Queensland, Australia. Information about
exposure to the sun was obtained from questionnaires; dermatologists diagnosed skin
cancers and assessed signs of actinic damage (solar lentigines, telangiectasia of the face, solar
elastosis of the neck and solar keratoses). After adjustment for age, sex, skin colour and
ability to tan, outdoor occupation and number of sunburns were both weakly associated with
increased prevalence. Stronger associations were seen for cutaneous indicators of sun
exposure, particularly for solar lentigines on the hands and telangiectasia on the face.
Recreational exposure was not associated independently with nonmelanocytic skin cancer.

In a later report (Green, 1991), the occurrence of nonmelanocytic skin cancer was posi-
tively correlated with grade of cutaneous microtopography.

In a subsequent study (Green & Battistutta, 1990), subjects were asked to report
nonmelanocytic skin cancer treated between 1 December 1985 and 30 November 1987,
around the survey in 1986. Medical records were searched to confirm the diagnoses. Subjects
who had had a skin cancer diagnosed at the prevalence survey were excluded. Outdoor occu-
pation, outdoor leisure activities and number of sunburns showed little association with
basal-cell carcinoma in an analysis including past history of skin cancer. All three variables
were related to incidence of squamous-cell carcinoma. [The Working Group noted that the
exclusion of subjects found to have skin cancer during the prevalence survey makes inter-
pretation of these results difficult. The inclusion of past history of skin cancer in the analysis
would have weakened any association with exposure to the sun.]

Vitasa et al. (1990) conducted a survey of the occurrence of nonmelanocytic skin cancer
among men engaged in traditional fishing practices ('watermen') in Maryland, USA. Subjects
were examined by dermatologists and interviewed about their history of exposure to the sun.
Estimates of individual annual and lifetime doses of UVB radiation were made by weighting
the ambient UVR by a history of occupation and outdoor activities and by taking into
account relative doses recorded by film dosimeters on the face. Patients with squamous-cell
carcinoma aged 15–60 had had an 11% higher annual dose of UVB radiation and those with
basal-cell carcinoma had had an 8% lower annual dose than that of age-matched watermen
without cancers. The effect of cumulative UVB radiation was examined after adjustment for
age, eye colour, childhood freckling and skin reaction to sunlight, all of which were positively
associated with occurrence of both types of nonmelanocytic skin cancer. Cumulative UVB
radiation dose was not associated with basal-cell carcinoma but was positively associated
with squamous-cell carcinoma. The latter association was significant in a comparison of the
top quarter of cumulative UVB versus the bottom three-quarters but not in a comparison of
exposures above and below the median. [The Working Group noted that the results for the
two types of cancer are not necessarily incompatible, both because of the small number of
cases and the fact that the diagnosis was confirmed histopathologically in only 62%.]
Table 9. Design features of cross-sectional studies of sun exposure and nonmelanocytic skin cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Place</th>
<th>Period of diagnosis</th>
<th>Population</th>
<th>Sample size</th>
<th>Response rate</th>
<th>Cases</th>
<th>Histological confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'Beirn et al. (1970)</td>
<td>County Galway, Ireland</td>
<td>1960s</td>
<td>Population-based</td>
<td>1338</td>
<td>Approx. 81%</td>
<td>13 BCC; 13 SCC on exposed sites only</td>
<td>Incomplete; 57% had biopsies</td>
</tr>
<tr>
<td>Silverstone & Gordon</td>
<td>Queensland, Australia</td>
<td>1961–63</td>
<td>Population-based</td>
<td>About 2200</td>
<td>87%</td>
<td>221 BCC or SCC on exposed surfaces</td>
<td>Incomplete</td>
</tr>
<tr>
<td>Holman et al. (1984a)</td>
<td>Busselton, Western Australia</td>
<td>1981</td>
<td>Population-based</td>
<td>1216</td>
<td></td>
<td>102, type not stated</td>
<td>No</td>
</tr>
<tr>
<td>Engel et al. (1988)</td>
<td>USA</td>
<td>1971–74</td>
<td>Population-based</td>
<td>20637</td>
<td>74%</td>
<td>BCC, number not stated</td>
<td>Incomplete [small proportion] Yes</td>
</tr>
<tr>
<td>Green et al. (1988a)</td>
<td>Nambour, Australia</td>
<td>1986</td>
<td>Population-based</td>
<td>2095</td>
<td>70–78%</td>
<td>42 BCC or SCC [90% of subjects examined on head/neck/hands/forearms only]</td>
<td>Incomplete</td>
</tr>
<tr>
<td>Green & Battistutta</td>
<td>Nambour, Australia</td>
<td>1985–87</td>
<td>Population-based</td>
<td>1770</td>
<td>84%</td>
<td>66 BCC; 21 SCC self-reported (confirmed from medical records)</td>
<td>Incomplete</td>
</tr>
<tr>
<td>Titasa et al. (1990)</td>
<td>Maryland, USA</td>
<td>1985–86</td>
<td>Male fishermen > 30 years old</td>
<td>838</td>
<td>70%</td>
<td>33 BCC; 35 SCC</td>
<td>Incomplete</td>
</tr>
</tbody>
</table>

BCC, basal-cell carcinoma; SCC, squamous-cell carcinoma
Table 10. Summary of results of cross-sectional studies of nonmelanocytic skin cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Index of exposure</th>
<th>Categories</th>
<th>Odds ratio (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'Beirn et al., (1970)</td>
<td>Sunlight hours (lifetime)</td>
<td>< 30 000 h</td>
<td>1.00 (1.2-348.2)</td>
<td>Mean aged > 60 years; calculated from raw data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 50 000 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silverstone & Searle (1970)</td>
<td>Occupation</td>
<td>Indoors</td>
<td>1.00</td>
<td>Men, chi-square = 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>1.29</td>
<td>[p > 0.1]; calculated from raw data, no adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>0.60</td>
<td>[p > 0.1]; calculated from raw data, no adjustment</td>
</tr>
<tr>
<td>Holman et al. (1984a)</td>
<td>Cutaneous microtopography</td>
<td>Grades 1-3</td>
<td>1.00</td>
<td>p = 0.004, trend adjusted for age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 4</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 5</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 6</td>
<td>9.20</td>
<td></td>
</tr>
<tr>
<td>Engel et al. (1988)</td>
<td>Solar skin damage</td>
<td>None</td>
<td>1.00</td>
<td>BCC, men, age-adjusted prevalence ratio, p < 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>1.00</td>
<td>BCC, women, age-adjusted prevalence ratio, p < 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>Green et al. (1988a)</td>
<td>Occupational exposure</td>
<td>Indoors and outdoors</td>
<td>1.01 (0.44-2.31)</td>
<td>Adjusted for age, sex, skin colour and propensity to sunburn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>1.76 (0.77-4.05)</td>
<td></td>
</tr>
<tr>
<td>Painful sunburns</td>
<td>None</td>
<td></td>
<td>1.00</td>
<td>Adjusted for age, sex, skin colour and propensity to sunburn</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.77 (0.22-2.61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td></td>
<td>1.09 (0.41-2.95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 6</td>
<td></td>
<td>1.66 (0.59-4.64)</td>
<td></td>
</tr>
<tr>
<td>Solar lentigines on hands</td>
<td>None</td>
<td></td>
<td>1.00</td>
<td>Adjusted for age, sex and other signs of actinic damage</td>
</tr>
<tr>
<td></td>
<td>1-10</td>
<td></td>
<td>1.61 (0.78-3.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td></td>
<td>1.43 (0.43-4.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 21</td>
<td></td>
<td>3.78 (1.06-13.41)</td>
<td></td>
</tr>
<tr>
<td>Telangiectasia on face</td>
<td>None</td>
<td></td>
<td>1.00</td>
<td>Adjusted for age, sex and other signs of actinic damage</td>
</tr>
<tr>
<td></td>
<td>Mild</td>
<td></td>
<td>1.63 (0.58-4.57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>2.74 (0.89-8.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td></td>
<td>3.67 (0.79-17.11)</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Index of exposure</td>
<td>Categories</td>
<td>Odds ratio (95% CI)</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Green et al. (1988a) (contd)</td>
<td>Actinic elastosis on neck</td>
<td>None</td>
<td>1.00</td>
<td>Adjusted for age, sex and other signs of actinic damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild to moderate</td>
<td>1.42 (0.53-3.80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe</td>
<td>1.75 (0.56-5.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar keratoses on face</td>
<td>None</td>
<td>1.00</td>
<td>Adjusted for age, sex and other signs of actinic damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td>1.55 (0.67-3.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-20</td>
<td>1.86 (0.69-5.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-50</td>
<td>3.00 (0.54-16.69)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 51</td>
<td>2.72 (0.73-10.15)</td>
<td></td>
</tr>
<tr>
<td>Green & Battistutta (1990)</td>
<td>BCC</td>
<td>Occupational exposure</td>
<td>Mainly indoors</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoors and outdoors</td>
<td>1.5 (0.8-2.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mainly outdoors</td>
<td>1.3 (0.6-2.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leisure exposure</td>
<td>Mainly indoors</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoors and outdoors</td>
<td>1.0 (0.4-2.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mainly outdoors</td>
<td>0.6 (0.3-1.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. of painful sunburns</td>
<td>None</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.5 (0.2-1.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5</td>
<td>0.6 (0.3-1.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 6</td>
<td>1.0 (0.4-2.5)</td>
</tr>
<tr>
<td></td>
<td>SCC</td>
<td>Occupational exposure</td>
<td>Mainly indoors</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoors and outdoors</td>
<td>4.4 (0.9-20.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mainly outdoors</td>
<td>5.5 (1.1-28.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leisure exposure</td>
<td>Mainly indoors</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoors and outdoors</td>
<td>2.0 (0.2-19.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mainly outdoors</td>
<td>3.9 (0.5-30.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. of painful sunburns</td>
<td>0-1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5</td>
<td>3.3 (0.9-12.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 6</td>
<td>3.0 (0.7-12.2)</td>
</tr>
<tr>
<td>Reference</td>
<td>Index of exposure</td>
<td>Categories</td>
<td>Odds ratio (95% CI)</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Vitasa et al. (1990)</td>
<td>SCC Cumulative UVB dose to face</td>
<td>Below median</td>
<td>1.0</td>
<td>Proportionate odds ratios; adjusted for age, eye colour, freckling and sunburn reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above median</td>
<td>2.05 (0.84–5.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Below 75 percentile</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above 75 percentile</td>
<td>2.53 (1.18–5.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCC Cumulative UVB dose to face</td>
<td>Below median</td>
<td>1.0</td>
<td>Proportionate odds ratios; adjusted for age, eye colour, freckling and sunburn reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above median</td>
<td>0.69 (0.31–1.53)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Below 75 percentile</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above 75 percentile</td>
<td>1.11 (0.50–2.44)</td>
<td></td>
</tr>
</tbody>
</table>

BCC, basal-cell carcinoma; SCC, squamous-cell carcinoma; unless otherwise specified, all analyses are for the two types together.
(d) Case-control studies

Design features of the case-control studies of exposure to the sun and the occurrence of nonmelanocytic skin cancer are summarized in Table 11. Most of the studies employed hospital- or clinic-based controls, which introduces potential for selection bias. The results are summarized in Table 12. The methods of analysis and of measurements of exposure to the sun, particularly in the earlier studies, were crude. Neither sensitivity to the sun, usually measured as the ability to tan or propensity to burn, nor pigmentary characteristics (such as skin colour and hair colour), which are likely to be confounding variables, were taken into account in most of the analyses.

The hospital-based study of Lancaster and Nelson (1957) in Sydney, Australia, was primarily a case-control study of melanoma (described in detail on p. 100). It can also be considered to be a case-control study of nonmelanocytic skin cancer, however, because it included two control groups—one of patients with basal-cell carcinoma, squamous-cell carcinoma or solar keratosis and the second of patients with leukaemia or cancer at a site other than the skin. All groups were matched by age and sex. Among males, long duration of occupational exposure to the sun was associated with an increased risk for nonmelanocytic skin cancer or solar keratosis. A summary of total exposure to the sun was devised by assigning scores to a number of factors considered to be related to exposure to the sun. Risk was highest among subjects judged to have excessive exposure to the sun. [The Working Group noted that the proportion of cases who had a solar keratosis is not stated, that no account was taken of matching in the analyses, and that the effect of exposure to the sun was not adjusted for sensitivity to the sun.]

Gellin et al. (1965) conducted a study in a single hospital in New York, USA, on 861 patients with basal-cell carcinoma and 1938 non-cancer dermatological patients attending the same clinic. Since 95% of cases and 43% of controls were 40 years old and over, the study was limited to these patients, resulting in 771 cases and 783 controls. The skin cancer patients spent more time outdoors per day than did control patients and were significantly more likely than controls to have light hair, fair complexion, blue eyes and an inability to tan. [The Working Group noted that the analyses were not adjusted for age, sex or sensitivity to the sun, and that confounding by age is likely because controls were younger than cases.]

Urbach et al. (1974) conducted a hospital-based study in Philadelphia, USA, and compared exposure to the sun of 392 patients with histologically confirmed basal-cell carcinoma, 59 patients with histologically confirmed squamous-cell carcinoma and 281 outpatients receiving treatment for a skin disease other than cancer. Controls were matched to cases by age and sex. Among male patients, those with basal-cell or squamous-cell carcinoma had more cumulative hours of exposure than did controls. Skin cancer patients also reported more sunburns. [The Working Group noted that the analyses were not adjusted for ability to tan, age or sex (apart from the sex-specific analysis).]

Vitaliano (1978) subsequently reanalysed the data of Urbach et al. (1974) and showed that, after adjustment for complexion (dark versus pale), ability to tan and age (< 60, ≥ 60), the cumulative time spent outdoors was related to both types of nonmelanocytic skin cancer. For basal-cell carcinoma, the odds ratio for ≥ 30 000 h of exposure relative to < 10 000 h was 3.19; for squamous-cell carcinoma it was 22.8. [The Working Group noted that confi-
dence intervals were not given. Part of the apparently stronger effect for squamous-cell carcinoma could be due to confounding by age: the controls were matched by age to the basal-cell carcinoma cases, who were younger than the squamous-cell carcinoma cases.1

A hospital-based case-control study was conducted in Montréal, Canada (Aubry & MacGibbon, 1985), in which patients with histologically confirmed squamous-cell carcinoma were identified in hospitals in 1977–78. Two patients with other conditions were matched as controls to each case by age, sex and hospital. Information on exposure to the sun was obtained from a postal questionnaire. Among 306 eligible cases, 94 (31%) replied, as did 186 (30%) of the eligible controls; 92 cases and 174 controls completed the questionnaire. Most of the controls who replied had been seen for seborrheic keratoses (61%) or intradermal naevi (16%). Scores for nonoccupational and occupational exposures were estimated, and the two scores were divided into thirds for analysis, which was based on logistic regression. The odds ratios, adjusted for each other and for host factors, were 1.08 and 1.64 for the middle and upper thirds of occupational exposure and 1.23 and 1.58 for the same levels of nonoccupational exposure, respectively. [The Working Group noted the low response rate and that the complexity of the recreational exposure to sun indices and the nature of the control group make the results difficult to interpret.]

O’Loughlin et al. (1985) conducted a case-control study in a hospital in Dublin, Ireland. Patients with histologically confirmed nonmelanocyic skin cancer [types not separated] were compared with age- and sex-matched patients who had cancers of other organs. There was no statistically significant difference between cases and controls in eight measures of exposure to the sun summarized in a single index of exposure and either type of nonmelanocyic skin cancer. [The Working Group noted that the measures of exposure to the sun were crude and likely to be subject to considerable misclassification. No adjustment was made for sensitivity to the sun.]

Herity et al. (1989) conducted a case-control study in the same hospital in Dublin of 396 histologically confirmed nonmelanocyic skin cancers in 1984–85. An equal number of age-and sex-matched patients with other cancers, attending the same hospital, were used as controls. More cases than controls lived in rural areas (p = 0.007), and cases reported more frequently spending more than 30 h outdoors per week, but the difference was not significant. For other indices of exposure to the sun, there was little difference between cases and controls. [The Working Group noted that results were not adjusted for reaction to sunlight.]

In a case-control study (reported as an abstract) conducted in 1983–84 in Alberta, Canada (Fincham & Hill, 1989), 225 men with basal-cell carcinoma and 181 men with squamous-cell carcinoma were compared with 406 age-matched male controls. Sunburn in adult life gave an odds ratio of 2.33 (p < 0.05) for all nonmelanocytic skin cancer; for basal-cell carcinoma, childhood sunburn gave an odds ratio of 2.48 (p < 0.05) and peeling an odds ratio of 1.85 (p < 0.05).

A population-based case-control study was conducted in Saskatchewan, Canada (Hogan et al., 1989), which included all patients diagnosed with basal-cell carcinoma in the Province in 1983. Two controls, matched by year of birth, sex and municipality of residence, were selected for each case from a universal Provincial health insurance plan. Replies to mailed questionnaires were received from 55.5% of the cases and 43.7% of the controls. A number of measures of exposure to the sun were associated with incidence of basal-cell
cancer. In a stepwise logistic regression analysis, occupation as a farmer, history of severe sunburn and working outdoors for more than 3 h per day in winter were independently associated with basal-cell carcinoma, after adjustment for freckles in childhood, family history of skin cancer, 'Celtic' mother, skin colour and hair colour. [The Working Group noted that the measures of exposure were crude and that the estimates do not appear to have been adjusted for the matching variables. The low response rate makes interpretation of the results difficult.]

On the basis of a population-based survey in Western Australia in 1987 of skin cancer among residents aged 40–64 years of age (Kricker et al., 1990), Kricker et al. (1991a) conducted a case–control study of 226 confirmed cases of basal-cell carcinoma and 45 of squamous-cell carcinoma; two sets of 1015 controls with no lesions, who had completed an interview, were available for each type of cancer. The response rate among those eligible to participate was identical for cases and controls: 89%. Separate analyses were undertaken for basal-cell carcinoma and squamous-cell carcinoma using unconditional logistic regression analysis. Risks for both cancers were higher in native-born Australians than in migrants, and the risk for basal-cell carcinoma decreased with increasing age at arrival in Australia. Only four of the subjects with squamous-cell carcinoma had been born outside Australia—an insufficient number to examine the effects of age at arrival. Indicators of sun damage to the skin (facial telangiectasia, solar elastosis of the neck, facial solar lentigines and number of solar keratoses), assessed by dermatologists during the prevalence survey, were examined in models adjusted for age, sex, ethnicity and migrant status and including all other sun damage indicators except solar keratoses, which were considered to be preneoplastic lesions and thus inappropriate for inclusion in models concerned with etiology. Cutaneous microtopography, an objective measure of actinic skin damage, graded without knowledge of the person's skin cancer status, and solar elastosis of the neck had significant residual effects for basal-cell carcinoma, while solar elastosis and facial telangiectasia had significant residual effects for squamous-cell carcinoma. The independently significant indicators of sun damage were analysed in models which included adjustment for age, sex, ethnicity and migrant status as well as measures of sun sensitivity. Solar elastosis of the neck remained an independent predictor of risk of basal-cell carcinoma (odds ratios, > 1.50; p = 0.003) and squamous-cell carcinoma (odds ratios, > 2.00; p = 0.04).

A subsequent analysis of individual sun exposure was published as an abstract (Kricker et al., 1991b). A positive association was found between nonmelanocytic skin cancer and life-time potential for exposure to the sun, but no evidence of increasing risk for either basal-cell carcinoma or squamous-cell carcinoma with increasing total hours of actual exposure to the sun as recalled by subjects. Risk for basal-cell carcinoma on the trunk was increased substantially in association with maximal exposure of the trunk to the sun, but there was no consistent pattern of association of site-specific basal-cell or squamous-cell carcinoma with exposure of the head and neck or limbs. Neither basal-cell nor squamous-cell carcinoma showed evidence of an association with sun exposure on working days; however, there was persuasive evidence of increased risk for both types of skin cancer with intermediate and high levels of accumulated exposure to the sun on non-working days. Moreover, there was evidence of an association, stronger for basal-cell carcinoma than for squamous-cell carcinoma, with a measure of intermittent exposure to the sun.
Gafá et al. (1991) conducted a case–control study of nonmelanocytic skin cancer in Sicily, Italy, in which 133 cases identified from a population-based registry (response rate, 94%) were compared with 266 sex- and age-matched controls. For each case, one control was selected randomly from among patients with non-neoplastic diseases at the same hospital as the case, and a second control was selected randomly from among friends or relatives of the case. After adjustment for family history of skin cancer, ‘cancer-related cutaneous disease’, skin colour and skin reaction to sunlight, sun exposure for at least 6 h per day and residence for at least 10 years at more than 400 m above sea level were significantly related to risk for nonmelanocytic skin cancer. In crude analyses in which the two types of cancer were separated, sun exposure for at least 6 h per day without a hat was strongly associated with risk for squamous-cell carcinoma [site unspecified] (odds ratio, 6.4; 95% CI, 1.9–21.1) but not for basal-cell carcinoma (1.4, 0.7–2.6). (The Working Group noted that the nature of the control group, the assessment of exposure and the failure to account for age in the analysis make the results difficult to interpret. The crude analysis of the type-specific results, the lack of data on the site of the tumours and the small numbers may explain the different results for the two types.)

(e) Cohort studies (Tables 13 and 14)

In a study in Chicago, IL (USA), Robinson (1987) investigated the incidence of second nonmelanocytic skin cancer among a group of 1000 patients who had had basal-cell carcinoma. Among 978 who were followed for five years after the initial diagnosis, 22% developed a second basal-cell carcinoma at the end of the first year and 36% within five years. There was no significant correlation between developing a second cancer and frequent exposure through sunbathing or outdoor leisure activities, work or currently living in an area with heavy exposure to the sun, or according to estimated number of hours of daily exposure to the sun. Among those with skin types I and II (always burn easily and never or minimally tan) who reported frequent sun exposure, there was an increased risk of second cancer ($p < 0.03$). [The Working Group noted that the methods of assessing exposure and the methods of analysis were not described, and that no numbers were reported. Risk factors for second cancers might not be the same as for the first.]

Marks et al. (1989) conducted a longitudinal series of examinations of the head, neck, forearms and hands of a population in Maryborough, north-central Victoria, Australia, for one week annually between 1982 and 1986. The incidence rates of squamous-cell and basal-cell carcinoma were higher in outdoor workers than in indoor workers. In an analysis of the two types combined, occupation was not significantly associated after adjustment for age, sex and reaction to sunlight ($p = 0.09$). [The Working Group noted that no account was taken of lesions that might have been removed between surveys.]

Hunter et al. (1990) conducted a study of basal-cell carcinoma in a cohort of female nurses in the USA. A total of 771 cases were identified from responses to follow-up questionnaires sent to the women two and four years after the initial exposure questionnaire was given. In a sample of 29 women, the diagnosis was confirmed for 28; confirmation of the diagnosis was not obtained routinely. Residents of California and Florida had the highest incidence rates. There was a trend of increasing incidence with increasing number of sunburns. With respect to time spent outdoors during the summer, nurses who spent more than
Table 11. Design features of case-control studies of sun exposure and nonmelanocytic skin cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Place</th>
<th>Period of diagnosis</th>
<th>Cases No.</th>
<th>Source</th>
<th>Controls No.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancaster & Nelson (1957)</td>
<td>Sydney, Australia</td>
<td>Unknown</td>
<td>173</td>
<td>Major hospitals</td>
<td>173</td>
<td>Other cancers, same hospitals</td>
</tr>
<tr>
<td>Gellin et al. (1965)</td>
<td>New York, USA</td>
<td>1955-59</td>
<td>771 BCC</td>
<td>One skin hospital</td>
<td>783</td>
<td>Other diagnoses, same skin clinic</td>
</tr>
<tr>
<td>Urbach et al. (1974)</td>
<td>Philadelphia, USA</td>
<td>1967-69</td>
<td>392 BCC</td>
<td>One skin and cancer clinic</td>
<td>281</td>
<td>Other diagnoses, same clinic</td>
</tr>
<tr>
<td>Aubry & MacGibbon (1985)</td>
<td>Montréal, Canada</td>
<td>1977-78</td>
<td>92 SCC</td>
<td>12 hospitals</td>
<td>174</td>
<td>Skin conditions, same hospitals</td>
</tr>
<tr>
<td>O’Loughlin et al. (1985)</td>
<td>Dublin, Ireland</td>
<td>Unknown</td>
<td>63 SCC</td>
<td>One hospital</td>
<td>121</td>
<td>Other cancers, same hospital</td>
</tr>
<tr>
<td>Herity et al. (1989)</td>
<td>Dublin, Ireland</td>
<td>1984-85</td>
<td>396 BCC</td>
<td>One hospital</td>
<td>396</td>
<td>Other cancers, same hospital</td>
</tr>
<tr>
<td>Hogan et al. (1989)</td>
<td>Saskatchewan, Canada</td>
<td>1983</td>
<td>538 BCC</td>
<td>Population</td>
<td>738</td>
<td>Population</td>
</tr>
<tr>
<td>Kricker et al. (1991a)</td>
<td>Geraldton, Australia</td>
<td>1987</td>
<td>226 BCC</td>
<td>Population</td>
<td>1015</td>
<td>Population</td>
</tr>
<tr>
<td>Gafà et al. (1991)</td>
<td>Ragusa, Sicily, Italy</td>
<td>1987-88</td>
<td>133 BCC</td>
<td>Cancer registry</td>
<td>133</td>
<td>Non-neoplastic diseases, same hospital; friends or relatives</td>
</tr>
</tbody>
</table>

BCC, basal-cell carcinoma; SCC, squamous-cell carcinoma
<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure</th>
<th>Categories</th>
<th>Odds ratio (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancaster & Nelson (1957)</td>
<td>Years of occupational exposure</td>
<td>< 5</td>
<td>1.0</td>
<td>[p < 0.001, trend; p and odds ratio calculated from raw data]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-10</td>
<td>[1.9]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 10</td>
<td>[4.2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total sun exposure</td>
<td>Minimal</td>
<td>1.0</td>
<td>[p = 0.13; p and odds ratio calculated from raw data]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>[1.8]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excessive</td>
<td>[2.4]</td>
<td></td>
</tr>
<tr>
<td>Gellin et al. (1965)</td>
<td>Hours per day outdoors</td>
<td>0-2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5</td>
<td>[4.9 (3.8-6.3)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 6</td>
<td>[7.7 (5.6-10.6)]</td>
<td></td>
</tr>
<tr>
<td>Urbach et al. (1974)</td>
<td>Cumulative hours (× 1000)</td>
<td>< 30</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-50</td>
<td>[3.5 (2.0-6.6)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 50</td>
<td>[9.3 (3.2-37.4)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 30</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-50</td>
<td>[4.0 (1.7-9.6)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 50</td>
<td>[11.1 (2.8-53.6)]</td>
<td></td>
</tr>
<tr>
<td>Aubry & MacGibbon (1985)</td>
<td>Non-occupational exposure score</td>
<td>Low</td>
<td>1.0</td>
<td>SCC [p = 0.07] for continuous variable, adjusted for occupation and host factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupational score</td>
<td>Low</td>
<td>1.0</td>
<td>SCC [p = 0.02] for continuous variable, adjusted for non-occupational score and host factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of sunlamps</td>
<td>Never</td>
<td>1.0</td>
<td>SCC [p = 0.008], adjusted for sun exposure and host factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ever</td>
<td>13.4 (1.38-130.48)</td>
<td></td>
</tr>
<tr>
<td>O'Loughlin et al. (1985)</td>
<td>Outdoor occupation</td>
<td>No</td>
<td>1.0</td>
<td>Not significant (McNemar's test) [odds ratio calculated from raw data ignoring matching]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>[1.5]</td>
<td>Not significant</td>
</tr>
<tr>
<td></td>
<td>Hours per week outdoors</td>
<td>< 10</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10</td>
<td>[1.4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunbathing > 4 h per day on vacations</td>
<td>No</td>
<td>1.0</td>
<td>Not significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>[1.0]</td>
<td></td>
</tr>
<tr>
<td>Herity et al. (1989)</td>
<td>Living in rural area</td>
<td>> 30 h outdoors/week</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1.1]</td>
<td></td>
</tr>
</tbody>
</table>
Table 12 (contd)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure</th>
<th>Categories</th>
<th>Odds ratio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hogan et al. (1989)</td>
<td>Farmer</td>
<td>No</td>
<td>1.0</td>
<td>BCC, adjusted for each other, plus freckles, family history of skin cancer, Celtic mother, skin colour, hair colour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>1.29 [1.12-1.46]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe sunburn</td>
<td>No</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>1.19 [1.04-1.35]</td>
<td>BCC</td>
</tr>
<tr>
<td></td>
<td>Working outdoors > 3 h per day in winter</td>
<td>No</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>1.13 [1.01-1.27]</td>
<td></td>
</tr>
<tr>
<td>Kricker et al. (1991a)</td>
<td>BCC Age at migration (years)</td>
<td>Australian born</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 10</td>
<td>1.37 (0.55-3.42)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 10</td>
<td>0.32 (0.18-0.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar elastosis of the neck</td>
<td>None</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild</td>
<td>1.85 (0.80-4.26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>2.75 (1.16-6.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe</td>
<td>3.96 (1.58-9.93)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutaneous microtopography</td>
<td>Grades 1-3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 4</td>
<td>2.01 (1.00-4.07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 5</td>
<td>2.42 (1.17-5.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 6</td>
<td>2.15 (0.99-4.70)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCC Migrant to Australia</td>
<td>No</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0.46 (0.15-1.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent colour difference between neck and adjacent skin</td>
<td>No</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2.58 (1.03-6.47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telangiectasia of face</td>
<td>None/mild</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>2.22 (1.06-4.67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe</td>
<td>1.88 (0.72-4.90)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar elastosis of the neck</td>
<td>None/mild</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>2.31 (1.00-5.34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe</td>
<td>3.33 (1.23-9.04)</td>
<td></td>
</tr>
</tbody>
</table>
Table 12 (contd)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure</th>
<th>Categories</th>
<th>Odds ratio (95% CI)</th>
<th>Commentsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gafá et al. (1981)</td>
<td>Residence > 400 m above sea level</td>
<td>No</td>
<td>1.0</td>
<td>Adjusted for family history of skin cancer, cutaneous-related conditions, skin colour, skin reaction to sunlight and sun exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2.0 (1.2-3.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun exposure ≥ 6 h/day</td>
<td>No</td>
<td>1.0</td>
<td>Adjusted for family history of skin cancer, cutaneous-related conditions, skin colour, skin reaction to sunlight and residence > 400 m above sea level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>1.9 (1.2-3.1)</td>
<td></td>
</tr>
</tbody>
</table>

BCC, basal-cell carcinoma; SCC, squamous-cell carcinoma; unless otherwise specified, analyses are for the two types together
8 h per week outside and who used sunscreens had the highest incidence rates. The rates in women who spent the least time outdoors were similar to those who spent more time outdoors and did not use sunscreens. [The Working Group noted that the high incidence rate in nurses using sunscreens, despite control for reaction to sunlight, might be due partly to confounding.]

Table 13. Design features of cohort studies of sun exposure and nonmelanocytic skin cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Place</th>
<th>Period of</th>
<th>Population</th>
<th>Sample size</th>
<th>Response rate</th>
<th>Cases</th>
<th>Histological confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robinson (1987)</td>
<td>Chicago, IL, USA</td>
<td>Not stated</td>
<td>Patients with previous BCC</td>
<td>1 000</td>
<td>98%</td>
<td>BCC, approx. 350</td>
<td>Not stated</td>
</tr>
<tr>
<td>Mark et al. (1989)</td>
<td>Maryborough, Australia</td>
<td>1982–86</td>
<td>Population-based</td>
<td>1 981</td>
<td>74%</td>
<td>35 SCC; 113 BCC on light-exposed surfaces only</td>
<td>Yes</td>
</tr>
<tr>
<td>Hunter et al. (1990)</td>
<td>USA</td>
<td>1980–84</td>
<td>Female nurses</td>
<td>73 366</td>
<td>74%</td>
<td>771 BCC (self-reported)</td>
<td>Not routinely confirmed [records of 28 out of sample of 29 confirmed]</td>
</tr>
</tbody>
</table>

BCC, no. of people with basal-cell carcinoma; SCC, no. of people with squamous-cell carcinoma

(f) Collation of results

The results discussed in this section come from cross-sectional studies by Holman et al. (1984a), Engel et al. (1988), Green et al. (1988a) and Vitasa et al. (1990), a case–control study by Kricker et al. (1991a) and cohort studies by Marks et al. (1989) and Hunter et al. (1990), all of which included information pertinent to the association between nonmelanocytic skin cancer and different aspects of sun exposure. Other studies described individually were not considered to provide useful information because of various methodological deficiencies. No data were available on short periods of residence and intermittent exposure, issues which are addressed for melanoma of the skin.

(i) Total sun exposure: potential exposure by place of residence

Consistent with descriptive data in a case–control study, migrants to Australia had a lower risk for squamous-cell carcinoma than did native-born Australians, after adjustment for host factors related to risk for nonmelanocytic skin tumours. Late age at arrival in Australia was associated with a lower risk for basal-cell carcinoma (Kricker et al., 1991a).

(ii) Biological responses to total sun exposure

Cross-sectional studies and a case–control study are consistent in showing a strong relationship between cutaneous indicators of sun damage and both types of nonmelanocytic skin cancer. In most studies, the indicators of damage and diagnoses of skin cancer were made by the same examiner, but cutaneous microtopography, graded without knowledge of outcome, also showed strong associations.
Table 14. Summary of results of cohort studies of nonmelanocytic skin cancer

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure</th>
<th>Categories</th>
<th>RR (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marks et al. (1989)</td>
<td>Occupation</td>
<td>BCC Indoors</td>
<td>1.0</td>
<td>Adjusted for age, (p = 0.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCC</td>
<td>Indoors</td>
<td>1.0</td>
<td>Adjusted for age, (p = 0.109)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoors</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Hunter et al. (1990)</td>
<td>Severe sunburns on face or arms</td>
<td>None</td>
<td>1.0</td>
<td>BCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>1.40 (1.13-1.75)</td>
<td>Adjusted for age; (p) (trend) = 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5</td>
<td>1.78 (1.42-2.25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\geq 6)</td>
<td>2.91 (2.37-3.58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe sunburns on face or arms</td>
<td>None</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>1.18 (0.94-1.48)</td>
<td>Adjusted for age, time period, region, time spent outdoors, sunscreen habit, hair colour, childhood tendency to sunburn; (p) (trend) < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5</td>
<td>1.34 (1.05-1.71)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\geq 6)</td>
<td>1.90 (1.50-2.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time spent outdoors during summer (h/week)</td>
<td>(\geq 8) (sunscreen)</td>
<td>1.0</td>
<td>Adjusted for age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\geq 8) (no sunscreen)</td>
<td>0.59 (0.50-0.69)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 8</td>
<td>0.71 (0.58-0.88)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time spent outdoors during summer (h/week)</td>
<td>(\geq 8) (sunscreen)</td>
<td>1.0</td>
<td>Adjusted for age, time period, region, number of sunburns, hair colour, childhood tendency to sunburn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\geq 8) (no sunscreen)</td>
<td>0.70 (0.60-0.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 8</td>
<td>0.73 (0.59-0.90)</td>
<td></td>
</tr>
</tbody>
</table>

BCC, basal-cell carcinoma; SCC, squamous-cell carcinoma
(iii) **Total sun exposure assessed by questionnaire**

No effect of time spent outdoors during summer was seen in a cohort study of basal-cell carcinoma (Hunter et al., 1990). In a cross-sectional study of fishermen, cumulative exposure to UVB radiation was positively associated with the occurrence of squamous-cell carcinoma but not of basal-cell carcinoma (Vitasa et al., 1990). The different results may be attributable in part to small numbers and incomplete histopathological confirmation of diagnoses.

(iv) **Occupational exposure**

In two studies from Australia, outdoor occupation was not significantly associated with the prevalence of the two types of carcinoma combined (Green et al., 1988a) or with the incidence of squamous-cell carcinomas (Marks et al., 1989).

(v) **Sunburn**

A cohort study of basal-cell carcinoma in the USA showed a trend of increasing risk with increasing number of sunburns after adjustment for various factors, including tendency to sunburn (Hunter et al., 1990). Number of sunburns showed a nonsignificant positive association with risks for basal-cell and squamous-cell carcinoma of the skin after adjustment for various constitutional variables, including propensity to burn (Green et al., 1988a).

2.1.2 **Cancer of the lip**

Assessment of the carcinogenicity of solar radiation for the lip is complicated by the fact that carcinoma at this site is actually diagnosed as a mixture of cancers of the external lip and cancers of the buccal membranes (oral cavity). Use of alcohol and tobacco are known causes of the latter tumours (IARC, 1985, 1986b, 1988).

While there are wide variations in the apparent incidence of cancer of the lip with latitude, evaluation of the association is difficult because of inconsistency in the definitions of the boundaries of the lip. ‘Cancer of the lip’ is defined as cancer of the vermilion border and adjacent mucous membranes and thus excludes cancers of the skin of the lip (WHO, 1977). Most are squamous-cell carcinomas and are located on the lower lip (Keller, 1970; Lindqvist, 1979), which is more heavily exposed to sunlight than is the upper lip (Urbach et al., 1966).

In general, case reports were not considered, because of the availability of more informative data. One case report from Nigeria described the occurrence of two lip tumours in albinos (Onuigbo, 1978).

(a) **Descriptive studies**

The incidence of lip cancer is 4–10 times higher in men than in women in most white populations, and higher in whites than in populations of darker skin complexions living in the same geographical areas (Muir et al., 1987).

(i) **Geographical variation**

The incidence of lip cancer is higher in rural than in urban areas, in particular among men (Doll, 1991).

Mortality from and incidence of lip cancer are substantially lower in migrants to Australia than in native-born Australians (Armstrong et al., 1983; McCredie & Coates,
(ii) Occupation

As reviewed by Clemmesen (1965), several observations during the nineteenth century pointed to an increased risk of lip cancer among people in outdoor occupations, in particular farmers and farm labourers. In England and Wales, increased risks for lip cancer were reported among agricultural labourers, fishermen, other dock workers and railwaymen employed outdoors (Young & Russell, 1926). Atkin et al. (1949) studied the occupations of 1537 men in England and Wales who died from lip cancer between 1911 and 1944. They reported that mortality from cancer of the lip was 13 times higher among men employed in agriculture than in men with professional jobs. Excess risks for lip cancer have also been observed in farmers in western Canada (Gallagher et al., 1984) and in Denmark (Olsen & Jensen, 1987; Lynge & Thygesen, 1990).

(b) Case-control studies

Keller (1970) compared 301 men with lip cancer admitted to veterans’ hospitals in the USA between 1958 and 1962 with two groups of white age-matched controls admitted to the same hospitals, comprising 301 oral cancer controls and 265 general controls. Altogether, 59.9% of the lip cancer cases, 37.1% of the cancer controls and 40.6% of the general controls had been born in the south of the USA. Farming was recorded as the occupation of 27% of the lip cancer cases but of only 8% of cancer controls and 4% of the general controls [crude odds ratios, 4.0 and 8.4, respectively]. Any type of outdoor work was recorded for 39% of cases of lip cancer, for 20% of cancer controls and for 12% of the general controls [crude odds ratios, 2.6 and 4.8, respectively]. Risk estimates were not adjusted for smoking, another risk factor identified in the study.

Spitzer et al. (1975) obtained information by personal interview on 339 men with squamous-cell carcinoma of the lip registered with the Newfoundland (Canada) Cancer Registry between 1961 and 1971 and 199 male controls chosen from the electoral register, matched for age and geographical location in nine census divisions; the overall response rate was 93%. An association was found between lip cancer and outdoor work (odds ratio, 1.52; p < 0.05); an odds ratio of 1.50 (p < 0.05) was found for occupation as a fisherman for at least eight full seasons, after adjustment for outdoor work, pipe smoking and age. No positive association was found for specific fishing activities, such as use of mouth as a third hand or of cast nets.

Lindqvist (1979) obtained information by mailed questionnaires from 171 cases (149 men, 22 women; 74% response rate) of epidermoid carcinoma of the lip registered with the Finnish Cancer Registry in 1972–73 and from a control group of 124 patients (56 men, 68 women; 77% response rate) registered with squamous-cell carcinoma of the skin of the head and neck. Risk estimates were adjusted for age. Odds ratios for men working outdoors ranged from 2.2 to 3.2 according to the calendar period during which the subjects had worked outdoors. The odds ratio was significantly increased only for those who both worked outdoors and smoked. [The Working Group noted that the choice of head and neck skin cancer patients as controls would lead to an underestimate of the odds ratio for outdoor work.]
Dardanoni et al. (1984) obtained information by personal interviews from 53 men with lip cancer registered in the Ragusa Cancer Registry in Italy and from 106 male controls matched for age and municipality of residence and admitted to the same hospitals for non-neoplastic diseases. An association was found between lip cancer and working or spending at least 6 h each day outdoors (odds ratio, 4.9; \(p < 0.001 \)). After control for socio-economic level, the odds ratio was 1.7 (\(p < 0.001 \)). [The Working Group noted that the latter \(p \) value is inconsistent with the number of subjects.]

2.1.3 Malignant melanoma of the skin

Melanoma of the skin is divided into three major histological types. The majority of melanomas in white-skinned populations (of European origin) are superficial spreading and nodular melanomas. Lentigo maligna melanoma—also known as Hutchinson’s melanotic freckle—occurs later in life than the other types, and more specifically on exposed sites; however, the body site and evidence of sun damage in surrounding skin may influence its pathological classification (McGovern et al., 1980). Acral lentiginous melanoma has not been studied epidemiologically; it is rare in white-skinned populations, although it comprises a substantial proportion of melanomas in Japan (Elwood, 1989a).

(a) Case reports

In general, case reports were not considered, owing to the availability of more informative data.

In a survey of 830 cases of xeroderma pigmentosum located through published case reports (Kraemer et al., 1987), melanomas were reported in 37 patients (5\%). As the median age at last follow-up of these cases was only 19 years, this observation is likely to represent a substantial excess over the number expected, although the exact nature of the study population precludes an accurate comparison. Site was specified for 29 of the 37 cases; 65\% of these were on the face, head and neck (normally constantly UVR-exposed sites) as compared with 19.4\% on this site among affected members of the US general population. [The Working Group recognized that data collected from previously published case reports are not uniform and may be atypical of a true incidence or prevalence series. Furthermore, no information is available on the relationship between solar exposure and the occurrence of malignant cutaneous melanoma in these patients.]

(b) Descriptive studies

(i) Sex distribution

The sex distribution of melanoma, adjusted for age, varies widely between populations. In many, it occurs as often as or more commonly in women than in men (Lee & Storer, 1980; Lee, 1982), in contrast to other types of skin cancer which are uniformly commoner in men (Muir et al., 1987).

(ii) Age distribution

Age distributions of melanoma in human populations vary with sex (Lee, 1982). They cannot easily be interpreted because they represent a variable combination of the different patterns of melanomas at different sites as well as a combination of time trends and trends in the experience of birth cohorts.
(iii) **Anatomical distribution**

Melanoma is proportionately commonest on the back and face in men and on the legs in women (Crombie, 1981); however, the incidence of melanoma per unit of body area is similar on fully exposed sites, such as the face, and on partially exposed sites, such as the lower limbs in women and the back in men. The frequency on body sites that are usually covered, such as the buttocks, is much lower (Elwood & Gallagher, 1983).

(iv) **Ethnic origin**

Melanoma is predominantly a disease of white-skinned populations. Rates in dark-skinned populations are much lower, the age-standardized incidence rate in India being 0.2 per 100 000 compared to around 30 in Queensland, Australia. In Los Angeles, USA, rates were less than 1 per 100 000 in Japanese and Chinese subjects and 11–12 in white subjects (Muir et al., 1987; Whelan et al., 1990). The site and histological distribution of melanoma are different in non-white populations and have been little studied epidemiologically. The remainder of this section deals only with melanoma in white populations.

The incidence of melanoma is substantially lower among Hispanics than among other whites in the USA. For example, the incidence among Hispanics in New Mexico is less than 2 per 100 000 person years, but in other whites it is about 11 per 100 000 (Muir et al., 1987). In several case-control studies (described in detail below), subjects with a southern or eastern European background had lower risks than those with northern European or British origins (Elwood et al., 1984; Holman & Armstrong, 1984a).

In a Canadian study (Elwood et al., 1984), people with an eastern or southern European background had a crude odds ratio of 0.5 relative to those with an English background. This effect was not changed appreciably after adjustment for constitutional factors of hair, eye and skin colour and the skin's reaction to sun exposure. In contrast, the effect of ethnic origin observed in Western Australia was substantially reduced after adjustment for pigmentation characteristics (Holman & Armstrong, 1984a).

(v) **Geographical variation**

Armstrong (1984) showed that the relationship between melanoma incidence in Caucasians and latitude of residence decreases from around 35° to a minimum around 55° and then rises with latitude due to high rates in Scandinavian and Scottish populations. This pattern is likely to be due to both latitudinal and pigmentation factors. Within countries, inverse relationships of incidence or mortality with latitude have been seen in England and Wales (Swerdlow, 1979), Norway (Magnus, 1973), Sweden (Eklund & Malec, 1978) and Finland (Teppo et al., 1978).

In the first comprehensive analysis of the geography of melanoma in whites, Lancaster (1956) noted that mortality from the disease was higher in Australia and South Africa than in the parts of Europe from which their populations originated; that mortality in Australia, New Zealand and the USA increased with proximity to the equator; but that within Europe it was higher in Norway and Sweden in the north than in France and Italy in the south. These patterns are also evident in more recent data (Armstrong, 1984).

Geographical variation in relationship to ambient UV irradiation levels: Several studies have compared melanoma incidence and mortality rates in different areas of North America to estimated or measured levels of ambient UVR, and Elwood (1989b) estimated the change
in rate for a 10% change in UVR level (Table 15). [The Working Group noted that these studies did not assess any other component of the solar spectrum.]

Elwood et al. (1974) showed, using mortality data for US states and Canadian provinces, that the correlation coefficients with latitude were 0.79 for men and 0.72 for women. A variation in latitude of 2°, which is equivalent to 138 miles, was associated with a change in death rates from melanoma of about 10%. Annual UV flux at erythema-producing wavelengths was calculated from information on latitude and meteorological data on cloud cover. This calculated index of exposure was very strongly correlated with latitude (correlation coefficient, 0.89), so melanoma mortality rates were strongly related to this index; a 10% increase in received UVR dosage would be expected to give an increase of 3.7-4.5% in the death rate from melanoma at latitude 50°, and 6.8-10.3% at latitude 30° (Table 15). These values were somewhat higher for men than for women; for example, 4.4% in men compared with 3.0% in women at latitude 50° using the exponential model.

Fears et al. (1976) related melanoma incidence to latitude and to a calculated measure of UVR. Their data cover a slightly narrower range of latitude, and they calculated that a 10% increase in UVR would cause an increase in melanoma mortality of 7-12%, the higher figure applying to more southerly latitudes, which already have higher rates. Incidence rates vary more rapidly with latitude than do mortality rates, and therefore they predicted that a 10% increase in UVR would be likely to give a 14-24% increase in the incidence of melanoma (see Table 15).

Estimates using calculated UVR levels: Fears et al. (1977) used measurements from Robertson-Berger meters for four areas and a power model, in which the calculated percentage changes are not dependent upon the initial latitude. These calculations showed considerably stronger effects, with an estimated 25% increase in incidence for a 10% increase in solar UVR (see Table 15).

Scotto and Fears (1987) used annual UVR counts from Robertson-Berger meters in seven areas of the USA (Detroit, Seattle, Iowa, Utah, San Francisco, Atlanta and New Mexico) and data on melanoma from incidence registries (the Surveillance Epidemiology and End Results system). They fitted a power model and presented analyses by sex and by body site of the melanoma divided into trunk and lower limb versus head, neck and upper limb. They obtained data on covariates, including ethnic origin, pigmentation characteristics, hours spent outdoors during weekdays and during weekends and use of sunscreens, suntan lotion and protective clothing, from telephone interviews with at least 500 households in each area. Data on the melanoma patients were not available, however. The results predict greater increases for females than for males, unlike the earlier work. The overall effects of a 10% increase in UVR are a 5.5% increase for trunk and lower limb tumours and a 9% increase for head, neck and upper limb tumours, averaged over the two sexes. Adjustment for the various covariates reduces the predicted increases to a 3.5% increase for trunk and lower limb tumours, and 5.5% for head, neck and upper limb tumours (see Table 15).

Pitcher and Longstreth (1991) used data on melanoma mortality over a 30-year period and calculated UV flux on the basis of satellite data from the US National Aeronautics and Space Administration, including measurements of ozone concentrations at high atmospheric conditions. The models fitted are complex, as they are fitted for the two sexes, for three different places covering a range of latitudes, and separately for changes in the annual UV
Table 15. Estimates by Elwood (1989b) of percentage increase in frequency of melanoma among whites with a 10% increase in solar ultraviolet radiation, based on differences with latitude in Canada and the USA

<table>
<thead>
<tr>
<th>Ultraviolet radiation level derived from*</th>
<th>Model</th>
<th>50° latitude</th>
<th>30° latitude</th>
<th>References on which estimates based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Incidence</td>
<td>Mortality</td>
<td>Incidence</td>
</tr>
<tr>
<td>Calculation of erythema-weighted index</td>
<td>Linear</td>
<td>4.5</td>
<td>6.8</td>
<td>Elwood et al. (1974)b</td>
</tr>
<tr>
<td>Calculation of erythema-weighted index</td>
<td>Exponential</td>
<td>5.7</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Calculation of erythema-weighted index</td>
<td>Exponential</td>
<td>14.0</td>
<td>23.5</td>
<td>Fears et al. (1976)c</td>
</tr>
<tr>
<td>RB meter (1974)</td>
<td>Power</td>
<td>25.0</td>
<td>25.0</td>
<td>Fears et al. (1977)d</td>
</tr>
<tr>
<td></td>
<td>Trunk and lower limb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crude</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjusted</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head, neck and upper limb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crude</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjusted</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.7</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crude</td>
<td>4.2</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjusted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation of erythema-weighted estimate from NASA including satellite ozone column measurements</td>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>3.2</td>
<td>3.2</td>
<td>Pitcher & Longstreth (1991)f</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exponential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>2.1</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>5.8</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

Both sexes (simple average of sex-specific results)

*RB, Robertson–Berger; NASA, National Aeronautics and Space Administration

bMortality data, USA and Canada 1950–67 by state/province; 58 areas

cIncidence data. Third National Cancer Survey (1969–71) for nine areas; US mortality by state. Calculation based on latitude equivalent to change in ultraviolet radiation

dIncidence data, Third National Cancer Survey (1969–71) for four areas

Incidence data, Surveillance Epidemiology and End Results Program for seven areas. Crude results take account only of age; adjusted results are controlled for ethnic origin, hair or skin colour, suntan lotion use and hours spent outdoors; total, for comparison, is based on 67% trunk and lower limb and 33% head, neck and upper limb tumours

fMortality data by US county 1950–79; estimates of changes in mean annual dose and in peak doses (clear day in June); estimates using DNA action spectrum were also made and were 1–8% higher than those shown.
flux and changes in the peak levels in clear summer conditions. Larger effects were again found for males than for females, and a larger effect when using the peak measurements than when using the annual measurements. The overall estimates of the percentage increase in melanoma mortality associated with a 5% decrease in ozone level, on the assumption that this is roughly equivalent to a 10% increase in solar UVR, ranged from 2.1 to 7.0 at 50°N and from 3.2 to 8.2 at 30°N (see Table 15).

[The Working Group noted that, despite the sophistication of some of the mathematical models, these results are derived from population-based descriptive data and not from individual measurements and are restricted to North America.]

(vi) Migration

The most informative data on risk in migrants come from Australia, New Zealand, Israel and the USA. Native residents of Australia (McCredie & Coates, 1989; Khlat et al., 1992) and New Zealand (Cooke & Fraser, 1985), mostly of British origin, experienced incidence and mortality rates of melanoma roughly twice those of British immigrants. Native Israelis had a risk at least twice that of immigrants to Israel from Europe for at least 30 years after immigration (Steinitz et al., 1989).

The higher incidence in white immigrants to Hawaii from the US mainland compared with white natives has been attributed to a difference in skin colour (Hinds & Kolonel, 1980). Non-Hispanic migrants to Los Angeles County (California, USA) from higher latitudes in the USA are still substantially protected against melanoma of all histological types decades after migration. Similar relative protection is enjoyed by native residents of more northerly US communities in comparison with co-resident migrants from the south-western USA (Mack & Floderus, 1991).

(vii) Socioeconomic status and occupation

Melanomas are much commoner in higher socioeconomic groups, as shown in data from the United Kingdom since 1949–51. In the United Kingdom, the distribution of melanoma in married women by social class (categorized by their husbands' social class) is similar to that of men, indicating that this is a social rather than a specific occupational factor (Lee, 1982). In the USA, the risk increases with income for men aged 30–69; at age 70 and above, the trend is reversed, suggesting a role for long-term exposure to the sun (Kirkpatrick et al., 1990). In case–control studies, the effect of socioeconomic status is weakened after adjustment for measures of exposure to the sun (Gallagher et al., 1987; Østerlind et al., 1988b).

Assessment of outdoor exposure on the basis of routine data on job descriptions showed that melanoma is commoner in indoor than in outdoor workers, even within the same socioeconomic group (Lee & Strickland, 1980; Lee, 1982). Cutaneous melanoma incidence rates during 1972–76 in New Zealand showed no pattern according to outdoor workplace (Cooke et al., 1984). An analysis of 3991 cases of cutaneous melanoma registered during 1971–78 in England and Wales and of 5003 cases registered during 1961–79 in Sweden suggested an elevated incidence in professional occupations. The incidence among farmers was close to that expected (Vågerö et al., 1990).

Garland et al. (1990) reported 176 incident cases of melanoma among US Navy personnel. The rate for indoor occupation was higher than that for outdoor workers.
(c) **Case-control studies**

Elements of each case-control study described below are given in Table 16.

(i) **Australia**

Lancaster and Nelson (1957) carried out a case-control study on 173 patients aged over 14 years treated for malignant melanoma in hospitals in Adelaide, Melbourne and Brisbane, and 173 hospital controls with cancers other than of the skin, matched for sex and age. Information was obtained by interviews [response rate not given], and analysis was done by single factor cross-tabulations only. Unmatched crude odds ratios were calculated by the Working Group. Skin (odds ratio, 1.95 for fair versus olive and medium), hair colour (odds ratio, 1.7 for fair and red versus black and brown), eye colour (odds ratio, 1.75 for blue and green-grey versus brown and hazel) and skin reaction to sunlight (2.9; 95% CI, 1.9–4.5 for red versus brown reaction) were significantly associated with risk for malignant melanoma. Among the other factors studied were birth outside Australia [0.8; 0.4–1.6], 10 years' or more occupational exposure to sunlight in males [1.4; 0.7–2.7], sunbathing [1.5; 0.9–2.4] and moderate [1.2; 0.5–3.1] and excessive [2.3; 0.8–6.3] total exposure to the sun compared to minimal exposure. There were only eight cases and 11 controls in the latter category of sun exposure.

Beardmore (1972) studied 468 cases of histologically confirmed malignant melanoma and 468 sex- and age-matched hospital controls (including patients with skin cancer) at one hospital in Brisbane. Information was obtained by interview [response rate and method of evaluation of hair, skin and eye colour not given]. Hair, skin and eye colour and skin reaction to sunlight were not associated with risk for malignant melanoma. Comparison of exposure to sunlight from mainly outdoor occupations to that from mainly indoor occupations resulted in a crude odds ratio of 1.42; 95% CI, 1.03–1.97; a similar comparison for recreational activities gave a crude odds ratio of 1.03; 0.75–1.42. Fewer cases than controls had a history of treatment for keratosis and/or skin cancer or currently had keratosis and/or skin cancer [crude odds ratios, 0.51, 0.38–0.69; and 0.16, 0.12–0.22, respectively].

In the Western Australia Melanoma study (Holman & Armstrong, 1984a,b), 511 cases aged 10–79 years and 511 population controls matched for sex, age and area of residence were interviewed at home using a questionnaire based on that of the Western Canada study, which included objective measurements and naevi counts. The study also included a review of pathology slides. Analyses were presented for superficial spreading, nodular and lentigo maligna melanomas and for a fourth, unclassifiable group. Response rates were 76% for cases and 62% for controls, and adjustment was made for chronic and acute skin reaction to sunlight, hair colour, ethnic origin and age at arrival in Australia using a multiple logistic regression model. Hair colour, acute and chronic reaction to sunlight, number of naevi and family history of melanoma were significantly associated with risk; skin and eye colour were significantly associated in a crude analysis only. Duration of residence in Australia was strongly, positively associated with risk for all melanomas and for all sub-types except for unclassifiable melanoma. After control for ethnic origin, the odds ratios for superficial spreading melanoma were 1.2 (95% CI, 0.25–5.5) for people arriving in Australia at age 0–4, 1.7 (0.34–8.0) for those arriving at age 5–9, 0.74 (0.17–3.3) for those arriving at age 10–14, 0.25 (0.05–1.4) for those arriving at age 15–19 years or older (< 30 years) and 0.38
STUDIES OF CANCER IN HUMANS

(0.19–0.78) for those arriving at age ≥ 30 years (p for trend, < 0.0001) compared to those born in Australia. A lifetime residential history was used to calculate the mean annual hours of bright sunlight based on place of residence as a measure of potential exposure to the sun. An analysis restricted to native-born Australians showed positive associations for all melanomas and for each subtype except nodular melanoma. An analysis dichotomizing exposure at an annual mean of > 2800 h sunlight at different ages showed that the highest risk ratio for all melanomas and for the superficial spreading subtype were for high exposure at ages 10–24. Cutaneous microtopography was used to measure skin damage; a positive association was found with all melanomas, being strongest for lentigo maligna melanoma.

In a further analysis by individual habits of exposure to the sun (Holman et al., 1986a), no significant association was seen for total outdoor exposure. Analysis by recreational outdoor exposure, expressed as a proportion of total exposure, at ages 10–24 years showed no significant association. For superficial spreading melanoma, analysis by specific activity showed positive associations with boating (p = 0.04) and fishing (p = 0.07) and weaker, nonsignificant associations with swimming and sunbathing at ages 15–24 or 0–9 years before diagnosis. For other types of melanoma, no clear positive association was found; regular swimmers had a lower risk of lentigo maligna melanoma (trend test significant). Occupational exposure was analysed on the basis of whether the site of the melanoma was usually covered by clothing and compared to that of a referent group for whom the site was usually covered: subjects for whom the site was exposed showed a significant positive association. In comparison with the same referent group, patients who had never worked outdoors had significantly increased risks for all melanomas. The type of bathing suit usually worn by females in summer was assessed, and a positive association was found for wearing bikinis or for nude bathing, which was significant for all trunk melanomas and for superficial spreading melanoma on the trunk. When previous sunburns were classified by severity, no significant trend was observed for all melanomas; but there was a positive trend for lentigo maligna melanoma (p = 0.06) and a significant negative association for nodular melanoma.

In the smaller Queensland Melanoma study (Green, 1984; Green et al., 1985a), 183 patients with histologically confirmed melanoma, other than lentigo maligna melanoma or acral lentiginous melanoma, and 183 population controls matched for sex, age and area of residence were interviewed at home using a standardized questionnaire, which included objective measurements and naevi counts. The response rates were 97% and 92%, respectively. Adjustment was made using a multiple logistic regression model. Hair colour, acute sun reactions and naevi were significantly associated with risk. Skin colour, eye colour, chronic sun reaction, freckling and family history of melanoma were significant in a crude analysis only. Hours of occupational and recreational exposure to the sun from 10 years of age across three categories gave risks of 1, 3.2 (95% CI, 0.9–12.4) and 5.3 (0.9–30.8) after adjustment for naevi, hair colour and propensity to sunburn. Average levels of exposure to UVB radiation were also allocated by residential history but showed no association with risk for melanoma. People born in Queensland had moderately higher risks than those who arrived there later in life or who had lived somewhere else at any time. Melanoma patients had more keratoses or skin cancers on their faces (odds ratio, 2.8; 1.1–7.2). Sunburn (Green et al., 1985a) was defined as pain persisting longer than 48 h, with or without blistering, and was recorded as the number of episodes in each decade. Risk increased with the number of
severe sunburns and was 1.9 and 5.0 in the two higher categories on matched analysis, decreasing to 1.5 (0.7–3.2) and 2.4 (1.0–6.1), respectively, when adjusted for naevi and exact age. An additional analysis of 49 cases of lentigo maligna melanoma and 49 controls showed no association with sunburn (Green & O'Rourke, 1985; Green et al., 1986).

In a more detailed review of these data (Green et al., 1986), no association was observed with occupational exposure to the sun. Analyses of recreational hours spent on the beach in the sun were made for lifetime exposures, exposures at 10–19 years of age and exposures in the five years prior to diagnosis; no strong or consistent association was seen in either crude or adjusted analyses. Associations with total accumulated hours of exposure to the sun (calculated by adding occupational and total recreational exposures) showed a positive trend for lifetime exposure and exposure at ages 10–19 (odds ratio, 4.4; 95% CI, 1.8–184.5), but no association was seen for exposure during the previous five years. Analysis of levels of UVR by lifetime residential history showed no major association and no site-specific association.

(ii) Europe

In a case–control study of residents of Oslo, Norway (Klepp & Magnus, 1979), 78 malignant melanoma patients over 20 years of age were compared with 131 unmatched hospital controls with other cancers. Both cases and controls with advanced disease were excluded. Information was obtained by questionnaire [response rate not given]. Hair and eye colour were recorded independently by the interviewer and subject but were not associated with risk for the disease, whereas skin reaction to sunlight and freckling were. A nonsignificant odds ratio of [1.5] was found for men working outdoors for more than 3–4 h/day; the odds ratio for taking sunbathing holidays in southern Europe was 2.4 ($p = 0.05$). No significant association was seen with degree of exposure of different body sites, classified from ‘as often as possible’ to ‘hardly ever’.

Adam et al. (1981) conducted a population-based case–control study in the United Kingdom of 111 female cases of malignant melanoma aged 15–49 traced from registries and 342 female controls randomly selected from general practitioners’ lists and matched for age and marital status. Information was obtained by postal questionnaire; response rates were 66% for cases and 68% for controls. Hair colour and skin reaction to sunlight, but not skin colour, were significantly associated with risk for malignant melanoma. Slightly more cases than controls reported deliberately tanning their legs or trunk, either at home or abroad. No difference was reported in the amount of work, leisure or total time spent outdoors. [The Working Group noted that the study concentrated on oral contraceptive use and that information on exposure to the sun was very limited.]

MacKie and Aitchison (1982) conducted a case–control study in western Scotland of 113 malignant melanoma patients aged 18–76 years and 113 sex- and age-matched hospital controls with conditions not related to the skin. Cases of lentigo maligna melanoma were excluded. Information about exposure to the sun within the previous five years was obtained by questionnaire [response rate not given] and included occupational and recreational exposure (≥ 16 h versus < 16 h outdoor exposure per week) and history of severe sunburn, defined as either ‘blistering sunburn’ or ‘erythema persisting for a week or longer’. Other factors included in the multivariate analysis were social class and skin type. A significant negative association was observed for recreational exposure and for occupational exposure
to the sun in males. A significant positive association was observed for severe sunburn. No significant difference was observed for the number of continental holidays taken or total number of days spent in sunnier climates.

Sorahan and Grimley (1985) studied 58 patients aged 20–70 years with cutaneous malignant melanoma (other than lentigo maligna melanoma) in two hospitals in the United Kingdom and 182 hospital controls with diseases other than of the skin and 151 unmatched controls from electoral rolls. The response rates were 64% for cases and 60% for each control group. Information was obtained by postal questionnaire, and analyses were adjusted using a multiple logistic regression model. A significant positive association was observed for number of bouts of painful sunburn ever experienced, with an odds ratio reaching 7.0 for five or more bouts compared to none. A significant positive association was also seen with the number of holidays ever spent abroad in a hot climate, reaching 6.5 for 21 holidays or more, compared to none. Both associations were weakened, and the latter became nonsignificant, after adjustment for propensity to sunburn, number of moles and history of sunburn.

In another study in the United Kingdom (Elwood et al., 1986), 83 histologically confirmed cases over 18 years of age and 83 hospital controls (in- and out-patients), matched for sex, age and area of residence, were interviewed at home using a questionnaire which included objective measurements and naevi counts. The responses were validated by replies to a postal questionnaire. The response rates were 74% for cases and 92% for controls. Adjustment was made using a multiple logistic regression model. Skin reaction to sunlight, freckling and naevi were significantly associated with risk. A history of sunburn causing pain for two days or more gave a significant odds ratio of 3.2 (95% CI, 1.7–5.9). Past outdoor occupational exposure showed a significantly reduced odds ratio of 0.2 (0.1–0.9) for the second highest category but a nonsignificant odds ratio of 1.7 (0.3–8.6) for the highest category and no overall trend.

In northern Italy, Cristofolini et al. (1987) compared 103 patients aged 21–79 under treatment for cutaneous malignant melanoma at one hospital with 205 hospital controls with diseases other than skin tumours. Subjects were interviewed [response rate not given] and assessed by a dermatologist. Adjustment was made using a multiple logistic regression model. Hair and skin colour and family history were significantly associated with risk, but eye colour, freckling and number of naevi were not. A history of frequent sunburn as an adult gave an odds ratio of 1.2 (95% CI, 0.7–2.1) and that of severe sunburn in early life an odds ratio of 0.7 (0.4–1.2). Heavy or frequent exposure to sunlight during the previous 20 years, categorized as yes or no, gave a significantly reduced odds ratio of 0.6 (0.4–0.95). Outdoor compared to indoor occupation gave a nonsignificant odds ratio of 0.9 (0.5–1.7), and a history of carcinoma of the skin gave a risk ratio of 0.4 (0.02–2.9), based on small numbers. Melanoma at exposed sites showed positive associations with heavy sun exposure (1.44; 0.8–2.8) and outdoor occupation (1.8; 0.9–3.7), while melanoma at normally unexposed sites showed a significant negative association with heavy exposure to the sun (odds ratio, 0.25; 95% CI, 0.13–0.47).

In a study of melanoma in eastern Denmark (Østerlind et al., 1988b,c; Østerlind, 1990), 474 cases of melanoma, excluding lentigo maligna melanoma patients, aged 20–79 were compared with 926 population controls and matched for sex and age. Subjects were interviewed at home using a questionnaire which included objective measurements and naevi
counts, and adjustment was made using a multiple logistic regression model. Response rates were 92% for cases and 82% for controls. The number of sunburns (defined as those causing pain for two days or longer) before age 15, from age 15 to 24 and over the previous 10 years were all significantly associated with risk: crude odds ratios for the maximal categories, 3.7 (95% CI, 2.3–6.1), 2.4 (1.6–3.6) and 3.0 (1.6–5.4), respectively. Adjustment for sex and host factors, including naevi, freckles and hair colour, reduced the risk ratios, but they remained significant. Adjustment for sunburns before age 15 rendered the associations with later sunburn weak and nonsignificant. Joint analysis of sunburns and naevi suggested independent, additive risks. Significantly increased risks were seen with residence near the coast before age 15 or for more than 30 years. Specific recreational activities were investigated and categorized by the number of years of regular participation, adjusted for sex and host factors, including number of naevi, and for other activities. Significant positive associations were observed with sunbathing, boating, winter skiing and swimming, the latter becoming nonsignificant after adjustment. Regular participation in gardening, ball games, golf, horseback riding or hiking was not associated with risk for melanoma. A positive trend was seen with vacations spent in beach resorts in southern Europe (odds ratio, 1.7; 95% CI, 1.2–2.4), which was weakened after adjustment for sunbathing and sunburn (1.4; 1.0–2.1). Socioeconomic status showed a strongly positive association in men, which became nonsignificant when adjusted for sunburn and recreational exposure to the sun. Occupational exposure outdoors for at least six months was associated with a significantly reduced odds ratio of 0.7 (0.5–0.9) in men; the protective effect was most pronounced in men who started working outside at an early age and continued for at least 10 years. No association was seen with skin grading categories defined by microtopography.

In a study in northern Italy (Zanetti et al., 1988), 208 cases of histologically confirmed malignant melanoma were identified from the regional tumour registry and were compared with 416 controls chosen from the National Social Service Registry. Response rates were 87% for cases and 68% for controls. An increased risk was observed with light hair colour, tendency to burn and a history of sunburn in childhood. No significant effect of region of origin was observed. Exposure to the sun was assessed by activity: for outdoor work, a nonsignificant increased risk was seen with the maximal duration of exposure (≥33 years) in men, but the overall trend was nonsignificant. Outdoor sports, assessed by years of participation, showed an increased risk at the maximal level in men and women (significant for men). A significantly increased risk was found for men participating in sports categorized as involving the greatest exposure to the sun. A nonsignificantly increasing trend in men was observed for total number of weeks' holiday, but little effect was seen in women; a significant positive trend was observed in men, but not for women, for the number of weeks spent at the seaside in childhood. Similar exposure in adult years resulted in a nonsignificant positive trend.

Garbe et al. (1989) studied 200 malignant melanoma patients at a dermatological follow-up clinic in Berlin, Germany, in 1987 and 200 controls from the same clinic who had any other skin disease (response rate, 90%). Subjects of non-German origin were excluded, as were those seeking consultation for pigmented naevi or who had been treated previously by UVR (10%). Occupational exposure to the sun, assessed as none, sometimes or nearly all the time, showed a strongly increased risk up to an odds ratio of 5.5 (1.2–25.3). No significant
relationship was found with duration of leisure-time exposure to the sun or number of sunburns. [The Working Group noted that little detail was given about exposure and that the control group consisted of patients with other skin disease.]

Weiss et al. (1990) studied 1079 cases of malignant melanoma reported to the German Dermatological Society Registries in 1984–87 and 778 hospital controls from the same clinics. Positive associations were seen with occupational exposure to the sun, which increased with the number of years of exposure. No association was seen with exposure to the sun during leisure time or with sunbathing. [The Working Group noted that this study appears to overlap with that of Garbe et al. (1989) and that the data were presented with relative risks but with no test of significance.]

Beitner et al. (1990) studied 523 incident cases of malignant melanoma seen at a hospital in Stockholm, Sweden (representing 64% of all cases registered in Stockholm County), and 505 controls selected from the population register for Stockholm County. Cases completed a questionnaire while waiting at the clinic, and controls received the questionnaire by mail (response rates, 99.6% and 96.2%, respectively). A significant positive effect was seen for the number of sunbathing sessions each summer, with a history of erythema after sunbathing and with sunbathing vacations abroad. Residence in countries around the Mediterranean or in a sub-tropical or tropical climates for more than one year during the previous 10 years gave a significant odds ratio of 1.9 [95% CI, 1.0–3.6]. There was no increase in risk with sunbathing during winter vacations at high altitudes. Outdoor workers had a significantly reduced risk of 0.6 (0.4–1.0) after adjustment for age, sex and hair colour.

Elwood et al. (1990) studied 195 cases of superficial spreading or nodular melanoma in people aged 20–79 from five pathology laboratories in the United Kingdom and 195 controls chosen from among all in- and out-patients in the region. Cases and controls underwent an interview and a limited examination by an interviewer in their homes (participation rate—cases and controls, 73%; voluntary response rate—cases, 91%; controls, 78%). Risk was significantly increased with sunburn at age 8–12 (odds ratio, 3.6; 1.4–11.2), but no significant increase was observed with sunburn at age 18–22 or with sunburn received 18–20 or five years prior to diagnosis. No other sun exposure variable was reported.

Grob et al. (1990) compared 207 consecutive white patients, 18–81 years old, with histologically confirmed invasive melanoma (at least level 2; lentigo melanoma and acral lentiginous melanoma excluded) seen in one dermatology clinic in Marseilles, France, with 295 controls. Controls under 65 years of age were chosen from among subjects interviewed after reportedly random selection and examined at a public health centre; those over 65 were chosen from among out-patients with non-cancer and non-dermatological conditions. Patients and controls were examined and interviewed by the same dermatologist. Multiple logistic model analysis was used. The risk for melanoma was increased significantly in association with annual outdoor leisure exposure during the previous two years (odds ratio, 8.4; 95% CI, 3.6–19.7), outdoor occupation (6.0; 2.1–17.4) and total lifetime sun exposure (odds ratio for maximum category, 3.4; 1.6–7.1). There was a nonsignificant association with sunburns in recent years (1.7; 0.63–4.6) after adjustment for number of naevi, maximal depth of suntan, hair colour, social level, complexion and age. [The Working Group found the study
difficult to interpret because of the nature of the control group and the relative recency of measurements of exposure to the sun.

In a report designed to produce a risk prediction model, MacKie et al. (1989) studied 280 cases of invasive cutaneous malignant melanoma (level 2 or deeper) from Scottish melanoma registries. Controls were 280 hospital patients with non-dermatological diseases. Response rates were 76% for cases and unknown for controls. An increased risk was observed for history of severe sunburn (adjusted odds ratio, 7.6 (95% CI, 1.8–32.0) for men and 2.3 (0.9–5.6) for women). A significant positive association for tropical residence was noted for men, which became nonsignificant after adjustment. [The Working Group noted that, apart from tropical residence, no data were presented on exposure to the sun.]

(iii) North America

Gellin et al. (1969) studied 79 patients, aged 30–79, with histologically confirmed malignant melanoma at one hospital in New York, USA, and compared them with 1037 hospital controls with skin conditions other than cancer. Information was obtained by interview and examination [response rate not given]. The odds ratios for duration of daily outdoor activity were [2.8 (95% CI, 1.3–5.8)] for 6 h or more and [4.1 (2.5–6.8)] for 3–5 h, compared to 0–2 h. [The Working Group noted that the controls had skin diseases.]

Paffenbarger et al. (1978) reported on cases found by follow-up of subjects first examined when entering Harvard University in 1916–50 and the University of Pennsylvania in 1931–40. Out of a total of 50 000 male subjects and 1.71 million person-years of observation, 45 deaths from melanoma were observed and each compared to four controls born in the same year, who were classmates and who had survived as long as the case subjects. Of the many factors investigated, only outside remunerative work was associated with a significant risk for melanoma (odds ratio, 3.9; p = 0.01). Within the cohort, students from New England had a 50% lower risk for melanoma than other students, presumably owing to more northerly residence.

Lew et al. (1983) carried out a study in Massachusetts on 111 cases of cutaneous malignant melanoma, aged 23–81, followed at one hospital and 107 controls who were friends of cases, matched by age and sex. Information was obtained by interview at the clinic; response rates were 99% for cases and 90% for controls, and analysis was made using a logistic regression model. Cases showed poorer tanning ability, and a significant association was observed with blistering sunburn during adolescence (odds ratio, 2.1; 95% CI, 1.2–3.6) and with 30 days or more vacation in sunny, warm places during childhood (2.5; 1.1–5.8). The association with history of sunburn persisted after controlling for tanning ability. [The Working Group noted that the nature of the controls and the simplicity of the analyses presented make interpretation of the results difficult.]

Rigel et al. (1983) analysed data on 114 melanoma patients (out of a total of 328) seen in a referral centre in New York between 1978 and 1981, and on 228 controls who were staff and patients at the centre. Significantly increased risks were seen with > 2 h per day sun exposure 11–20 years previously (odds ratio, 2.5; p = 0.005) and outdoor versus indoor recreation (2.4; p = 0.01). [The Working Group noted that the selection of subjects and the nature of the control group make these results difficult to interpret.]
In the Western Canada Melanoma case–control study (Elwood et al., 1984, 1985a,b), carried out in four Canadian provinces, 595 cases of malignant melanoma, aged 20–79, and 595 population controls, matched for sex, age and province of residence, were questioned by trained interviewers at their homes (response rates: cases, 83%; controls, 48–59%). Cases of lentigo maligna melanoma and acral lentiginous melanoma were excluded. Analyses were made using a multiple logistic regression model. Significant positive associations were found after adjustment for host factors and ethnic origin for frequent recreational (odds ratio, 1.7; 95% CI, 1.1–2.7) and holiday exposure (1.5; 1.0–2.3) and with the number of sunny vacations per decade (1.7; 1.2–2.3). No overall trend was observed for occupational exposure, but a significantly increased risk was associated with moderate occupational exposure, defined as seasonal or short-term occupational exposure. Maximal occupational exposure was associated with a significantly reduced odds ratio in men (0.5 [CI not given]) but not in women (1.5 [CI not given]). Analysis of total annual exposure to the sun from all sources showed no overall trend (odds ratio, 1.0–1.6 in various categories above the minimal exposure referent group). Severe or frequent sunburn in childhood resulted in a nonsignificant odds ratio of 1.3, after adjustment for host factors and sun sensitivity. From variables relating to sunburn on vacation and the usual degree of suntan in winter and summer, positive associations were observed for increasing sunburn and with decreasing usual tan. Cross-tabulation of sunburn with tendency to sunburn (skin type) did not change the significant positive effect of tendency to burn, but the odds ratio for sunburn fell from 1.8 in the maximal category to 1.4 (p > 0.2) after adjustment for sun reaction. Similarly, cross-tabulation of usual degree of suntan against skin type gave little difference in the positive association with reaction to the sun, but a weakening of the association with usual degree of suntan was seen which became nonsignificant. A multivariate analysis including history of sunburn, usual degree of suntan, skin type and host factors showed significance for the two latter factors, nonsignificant positive effects of holiday sunburn and a significant negative effect of usual degree of suntan. These results are interpreted as showing a primary association with tendency to burn easily or to tan poorly rather than with history of either sunburn or suntan. For men, a significant negative association was seen with outdoor occupation, but this weakened and became nonsignificant when adjusted for recorded exposure to the sun. Similarly, the crude odds ratio for upper compared to lower socioeconomic groups was 3.8 (2.0–7.4) but was reduced to 2.3 (1.0–5.1) after adjustment for host factors and for occupational, recreational and holiday sun exposure (Gallagher et al., 1987).

Elwood et al. (1987) made an analysis separating superficial spreading melanoma, nodular melanoma and lentigo maligna melanoma in the western Canada study, based on 415, 128 and 56 cases, respectively. Recreational exposure, holiday exposure and the number of sunny vacations per decade were positively and significantly (trends) associated with superficial spreading melanoma (odds ratios, 1.4, 2.0 and 2.2; 95% CI, 1.0–2.0, 1.4–2.9 and 1.5–3.3, respectively); recreational exposure was also positively associated with nodular melanoma (2.4; 1.3–4.5), but neither holiday exposure nor the number of sunny vacations showed an association. None of these measures of intermittent exposure was significantly associated with lentigo maligna melanoma. Occupational exposure showed no significant association with any of the three types. History of sunburn showed positive but nonsignificant
associations with superficial spreading and lentigo maligna melanomas but not with nodular melanoma.

Brown et al. (1984) identified 120 men who had been aged 18–31 during the Second World War from among 1067 patients seen at a melanoma clinic in New York City in 1972–80 and sent them questionnaires (response rate, 74%). Controls were 65 age-matched subjects attending the same dermatology department with skin diseases other than melanoma [response rate unknown]. Within the total of 74 cases and 49 controls who had been in the armed services, the odds ratio for service in the tropics as compared to service in the USA or Europe was [7.7; 95% CI, 2.5–23.6].

In a hospital-based study in Buffalo, NY, USA (Graham et al., 1985), 404 cases of cutaneous malignant melanoma referred to the Roswell Park Memorial Institute, aged from under 30 to over 65, were compared with 521 controls with other neoplasms at the same institute, using questionnaires completed on admission. There was a weak negative trend with total number of hours of exposure to the sun, which was significant in men; a similar trend was observed for average annual exposure to the sun. Occupational exposure to the sun gave a nonsignificant reduction in risk in men in the highest exposure group after adjustment for tendency to burn. Multivariate analysis showed a negative association with cumulative exposure to the sun, which was significant in men when adjusted for tendency to burn, freckling and light complexion. Results specific to recreational or holiday exposure to the sun were not presented.

Dubin et al. (1986) compared 1103 cases of melanoma seen at the New York University Medical Center from 1972 to 1982 (mostly in 1977–79) to 585 controls interviewed in 1979–82 at the skin clinic for conditions excluding cancer. Both cases and controls were interviewed by physicians; response rates were 98% for cases and 78% for controls. In order to complete the data on risk factors, a postal questionnaire was sent requesting information on exposures to fluorescent lights and to the sun and on skin colour (response rates, 45% of cases and 30% of controls). Mostly outdoor compared to mostly indoor work gave an odds ratio of 2.5 (95% CI, 1.4–4.4) and mostly outdoor compared with mostly indoor recreation gave an odds ratio of 1.7 (1.2–2.3), although mixed indoor and outdoor recreation gave a significantly reduced risk of 0.6 (0.5–0.8). Overall exposure to the sun (three categories) showed no trend. A history of the presence of solar keratosis gave a significant risk ratio of 5.0 (2.3–10.5). Quantitative total sun exposure was assessed for 623 cases and all 585 controls: there was no significant trend with total hours of exposure to the sun per day 0–5, 6–10 or 11–20 years before diagnosis. [The Working Group noted that the cases and controls were not interviewed over the same period.]

In a study based on a subset of the above (Dubin et al., 1989), 289 cases and 527 controls were interviewed using the same method (response rates, 100% of eligible cases; 70% of controls [19% of potential controls were excluded because of diagnosis of a lesion known to be caused by exposure to the sun]). Mostly outdoor occupation gave a nonsignificant elevated risk. Mostly outdoor recreation was associated with a significantly elevated risk in light tanners but a nonsignificant elevated risk in dark tanners (interaction nonsignificant). Overall exposure to the sun was associated with significantly increased risks in all groups. A history of sunburn was associated with a significantly increased risk in light tanners and in all subjects but had a nonsignificant protective effect in dark tanners (interaction significant).
When analysed by age group, a history of sunburn gave a positive association at age 20–39, a weak association at 40–59 and a negative association at 60 or over (interaction significant). Prior skin cancer or solar keratosis had a significant effect, which was stronger in men than in women (interaction nonsignificant).

In a study in San Francisco, Holly et al. (1987) compared 121 patients with nodular or superficial spreading melanoma at a university melanoma clinic with 139 controls from a medical screening clinic or from an orthopaedic clinic at the same centre. Response rates were ‘over 95%’. Sunburn score, based on the number of blistering sunburns during school and young adult years, showed a significant odds ratio of 3.8 (95% CI, 1.4–10.4) after controlling for naevi, hair colour and previous skin cancers. A positive association was seen with previous skin cancer (3.8; 1.2–12.4).

Weinstock et al. (1989) reported a case–control study within a cohort of US nurses (see Hunter et al., 1990, p. 86). Data on 130 cases and 300 controls (response rates to post-diagnosis questionnaire, 85% and 81%, respectively) were analysed using multivariate models. Following adjustment for skin sensitivity, significant positive effects were seen for sunburn at ages 15–20 (odds ratio, 2.2; 95% CI, 1.2–3.8), but not at age ≥ 30 (1.3; 0.7–2.3), and for residence at a southern latitude at age 15–20 (2.2; 1.1–4.2), but not at age ≥ 30 (1.6; 0.9–2.8). No direct recording of exposure to the sun was reported.

A further analysis (Weinstock et al., 1991a) assessed the use of swimsuits in these subjects. There was a significant positive association of melanoma risk with the frequency of use of swimsuits of any type in sun-sensitive women (odds ratio, 6.4; 95% CI, 1.7–23.8) but not in sun-resistant women (0.3; 0.1–1.0). After controlling for type of swimsuit and sensitivity factors, melanoma risk was increased with increasing hours per day of outdoor swimsuit use (any type) after age 30, but no association was seen with intensity of exposure or with the number of winter vacations in warm and sunny locations. The use at age 15–20 of a bikini compared to high backline, one-piece swimsuits, gave an odds ratio for all melanomas of 1.9 (1.0–3.7) and for trunk melanoma specifically of 0.8 (0.3–2.6); the risks were 3.5 [CI not given] among sun-sensitive women and 1.3 [CI not given] among less sun-sensitive women, but the interaction was not significant.

In a case–control study of patients attending a pigmented lesion clinic in Boston, USA (Weinstock et al., 1991b), 186 had cutaneous melanoma; the 239 controls had other dermatological diagnoses, the most frequent of which were common naevus and solar keratosis. Data were obtained from medical records and from a self-administered questionnaire completed before clinical examination and were analysed by a multivariate method. Significantly increased risks for melanoma were associated with lack of tan after repeated exposures as a teenager (odds ratio, 2.3; 95% CI, 1.0–4.9). A nonsignificant trend towards increased risk was observed for residence in southerly areas. [The Working Group noted that the paper dealt primarily with dysplastic naevi and the results on melanoma are not given in detail, and that the controls also had dermatological conditions.]
Table 16. Case-control studies of melanoma in which exposure to the sun and/or artificial ultraviolet radiation was assessed

<table>
<thead>
<tr>
<th>Place</th>
<th>Period of diagnosis</th>
<th>No. of cases</th>
<th>Source of cases</th>
<th>Melanoma type</th>
<th>No. of controls</th>
<th>Type of control</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Australia</td>
<td>NS</td>
<td>173</td>
<td>3 hospitals</td>
<td>All types</td>
<td>173</td>
<td>Other cancers</td>
<td>Lancaster & Nelson (1957)</td>
</tr>
<tr>
<td>Queensland, Australia</td>
<td>1963–69</td>
<td>468</td>
<td>1 hospital</td>
<td>All types</td>
<td>468</td>
<td>Hospital patients, including skin cancers</td>
<td>Beardmore (1972)</td>
</tr>
<tr>
<td>Western Australia</td>
<td>1980–81</td>
<td>511</td>
<td>Population</td>
<td>All types</td>
<td>511</td>
<td>Population</td>
<td>Holman & Armstrong (1984a,b)</td>
</tr>
<tr>
<td>Queensland, Australia</td>
<td>1979–80</td>
<td>183</td>
<td>Population</td>
<td>No LMM</td>
<td>183</td>
<td>Population</td>
<td>Green (1984); Green et al. (1985a)</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oslo, Norway</td>
<td>1974–75</td>
<td>78</td>
<td>1 hospital</td>
<td>All types</td>
<td>131</td>
<td>Other cancers, same hospital</td>
<td>Klepp & Magnus (1979)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1971–76</td>
<td>111</td>
<td>Population</td>
<td>All types</td>
<td>342</td>
<td>General practice lists</td>
<td>Adam et al. (1981)</td>
</tr>
<tr>
<td>Western Scotland</td>
<td>1978–80</td>
<td>113</td>
<td>Hospital</td>
<td>No LMM</td>
<td>113</td>
<td>Hospital, non-skin</td>
<td>MacKie & Aitchison (1982)</td>
</tr>
<tr>
<td>Birmingham, UK</td>
<td>1980–82</td>
<td>58</td>
<td>2 hospitals</td>
<td>No LMM</td>
<td>333</td>
<td>Hospital and population</td>
<td>Sorahan & Grimley (1985)</td>
</tr>
<tr>
<td>Nottingham, UK</td>
<td>1981–84</td>
<td>83</td>
<td>Population (2 hospitals)</td>
<td>All types</td>
<td>83</td>
<td>Matched hospital</td>
<td>Elwood et al. (1986)</td>
</tr>
<tr>
<td>Trento, Italy</td>
<td>1983–85</td>
<td>103</td>
<td>1 hospital</td>
<td>All types</td>
<td>205</td>
<td>Hospital</td>
<td>Cristofolini et al. (1987)</td>
</tr>
<tr>
<td>East Denmark</td>
<td>1982–85</td>
<td>474</td>
<td>Population</td>
<td>No LMM</td>
<td>926</td>
<td>Matched population</td>
<td>Østerlind et al. (1988a,b); Østerlind (1990)</td>
</tr>
<tr>
<td>Turin, Italy</td>
<td>1984–86</td>
<td>208</td>
<td>Population</td>
<td>All types</td>
<td>416</td>
<td>Population</td>
<td>Zanetti et al. (1988)</td>
</tr>
<tr>
<td>Berlin, Germany</td>
<td>1987</td>
<td>200</td>
<td>1 hospital</td>
<td>All types</td>
<td>200</td>
<td>Skin clinic patients</td>
<td>Garbe et al. (1989)</td>
</tr>
<tr>
<td>Place</td>
<td>Period of diagnosis</td>
<td>No. of cases</td>
<td>Source of cases</td>
<td>Melanoma type</td>
<td>No. of controls</td>
<td>Type of control</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Scotland</td>
<td>1987</td>
<td>280</td>
<td>Population</td>
<td>Invasive MM</td>
<td>280</td>
<td>Hospital, excluding skin</td>
<td>MacKie et al. (1989)</td>
</tr>
<tr>
<td>Germany</td>
<td>1984–87</td>
<td>1079</td>
<td>6 dermatology clinics</td>
<td>All types</td>
<td>778</td>
<td>Skin clinic patients</td>
<td>Weiss et al. (1990)</td>
</tr>
<tr>
<td>Stockholm, Sweden</td>
<td>1978–83</td>
<td>523</td>
<td>1 hospital</td>
<td>All types</td>
<td>505</td>
<td>Matched population</td>
<td>Beitner et al. (1990)</td>
</tr>
<tr>
<td>Midlands, UK</td>
<td>1984–86</td>
<td>195</td>
<td>Population</td>
<td>SSM and NM</td>
<td>195</td>
<td>Hospital in-/out-patients</td>
<td>Elwood et al. (1990)</td>
</tr>
<tr>
<td>Southeast France</td>
<td>1986–88</td>
<td>207</td>
<td>Hospital</td>
<td>Invasive, all types</td>
<td>295</td>
<td>Health centre</td>
<td>Grob et al. (1990)</td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York, USA</td>
<td>1955–67</td>
<td>79</td>
<td>1 hospital</td>
<td>All types</td>
<td>1037</td>
<td>Other skin diseases, non-cancer</td>
<td>Gellin et al. (1969)</td>
</tr>
<tr>
<td>Boston, MA, USA</td>
<td>NS</td>
<td>45</td>
<td>Cohort of university alumni</td>
<td>All types</td>
<td>180</td>
<td>Classmates</td>
<td>Paffenbarger et al. (1978)</td>
</tr>
<tr>
<td>Philadelphia, PA, USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, MA, USA</td>
<td>1978–79</td>
<td>111</td>
<td>1 hospital</td>
<td>All types</td>
<td>107</td>
<td>Friends of cases</td>
<td>Lew et al. (1983)</td>
</tr>
<tr>
<td>New York, USA</td>
<td>1978–81</td>
<td>114</td>
<td>1 hospital</td>
<td>All types</td>
<td>228</td>
<td>Patients and staff</td>
<td>Rigel et al. (1983)</td>
</tr>
<tr>
<td>New York, USA</td>
<td>1972–80</td>
<td>74</td>
<td>1 melanoma clinic</td>
<td>All types</td>
<td>49</td>
<td>Skin clinic patients</td>
<td>Brown et al. (1984)</td>
</tr>
<tr>
<td>Western Canada</td>
<td>1979–81</td>
<td>595</td>
<td>Population</td>
<td>SSM, NM or UCM</td>
<td>595</td>
<td>Population</td>
<td>Elwood et al. (1984, 1985a,b)</td>
</tr>
<tr>
<td>Buffalo, NY, USA</td>
<td>1974–80</td>
<td>404</td>
<td>Hospital patients</td>
<td>All types</td>
<td>521</td>
<td>Cancer patients</td>
<td>Graham et al. (1985)</td>
</tr>
<tr>
<td>New York, USA</td>
<td>1972–82</td>
<td>1103</td>
<td>3 hospitals</td>
<td>All types</td>
<td>585</td>
<td>Skin clinic patients</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td></td>
<td>NM</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td>LMM</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco, CA, USA</td>
<td>1984–85</td>
<td>121</td>
<td>1 melanoma clinic</td>
<td>NM and SSM</td>
<td>139</td>
<td>Clinic patients</td>
<td>Holly et al. (1987)</td>
</tr>
<tr>
<td>Place</td>
<td>Period of diagnosis</td>
<td>No. of cases</td>
<td>Source of cases</td>
<td>Melanoma type</td>
<td>No. of controls</td>
<td>Type of control</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>New York, USA</td>
<td>1979–82</td>
<td>289</td>
<td>3 hospitals</td>
<td>All types</td>
<td>527</td>
<td>Non-cancer skin patients</td>
<td>Dubin et al. (1989)</td>
</tr>
<tr>
<td>USA</td>
<td>1976–84</td>
<td>130</td>
<td>Nurses cohort</td>
<td>AM excluded</td>
<td>300</td>
<td>Nurses cohort</td>
<td>Weinstock et al. (1989)</td>
</tr>
<tr>
<td>Boston, MA, USA</td>
<td>1982–85</td>
<td>186</td>
<td>1 hospital</td>
<td>All types</td>
<td>239</td>
<td>Skin clinic patients</td>
<td>Weinstock et al. (1991b)</td>
</tr>
</tbody>
</table>

NS, not specified; SMM, superficial spreading melanoma; NM, nodular melanoma; UCM, unclassifiable melanoma; LMM, lentigo maligna melanoma (or Hutchinson's melanotic freckle); AM, acral lentiginous melanoma
(d) Collation of results

The studies summarized above show that a range of host characteristics are related to melanoma risk, including ethnic origin, skin, hair and eye pigmentation, and, importantly, a tendency to sunburn or suntan, often expressed clinically as skin type. These factors can be assumed to reflect genetic sensitivity to cutaneous effects of sun exposure and, in addition to the indirect evidence of a role of exposure to the sun in melanoma that they provide, should be considered as confounders in a relationship between sun exposure and melanoma. The numbers of acquired benign naevi and of dysplastic naevi have been shown to be very strong risk factors for melanoma in several studies; the density of freckling on the skin has also been shown to be a risk factor. Because there is evidence that these outcomes are themselves related to sun exposure, and in the case of naevi may be intermediate steps in the genesis of melanoma, they should not be considered confounding factors (Armstrong, 1988). Most of the studies relied on a wide range of questions to assess different aspects of sun exposure. Armstrong (1988) developed a useful classification of such questions, dividing them into those that assess potential exposure, such as place of residence and time of migration, those that record actual exposure and those that record response to exposure, such as questions on sunburn and suntanning.

(i) Total sun exposure: potential exposure by place of residence (Table 17)

Consistent with the descriptive studies, Holman and Armstrong (1984b) showed that the risk in migrants arriving in Australia before age 10 (odds ratio, 0.89; 95% CI, 0.44-1.80) is as high as that of the Australian born (1.00), and the risk in those arriving at age 10 or above is much less (0.34; 0.16-0.72 for age 10-29; 0.30; 0.08-1.13 for age ≥ 30). These data are an improvement on descriptive data as they allow control for ethnic background and pigmentation. In the same study, an association was seen with annual hours of bright sunlight averaged over all places of residence.

In the USA, two case-control studies (Graham et al., 1985; Weinstock et al., 1989) showed increased risks for people who had lived at southerly latitudes.

Increased risks in people who have lived near the coast were seen in Denmark (Østerlind et al., 1988b) and in Queensland, Australia (Green & Siskind, 1983). It was assumed in the Danish study that coastal residence would involve more exposure to the sun. In Queensland, living near the coast is not related to annual ambient UVR, which varies with latitude, so that peak summer UV irradiance is higher in the interior than on the coast (Green & Siskind, 1983). The observations are thus due either to different behavioural patterns with geographical location or to differences in exposure to UVR.

(ii) Biological response to total sun exposure

It has been assumed that a history of nonmelanocytic skin cancer, solar keratoses, actinic tumours or changes on cutaneous microtopography are all indicators of cumulative sun damage. Positive associations are seen with these measures in studies in Australia and in the USA, although Østerlind et al. (1988b) in Denmark saw no relationship with microtopographical change (Table 17).
Table 17. Results of case-control studies on melanoma: place of residence, biological markers

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>OR*</th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential exposure by place of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>5</td>
<td></td>
<td></td>
<td>Residence near coast; mortality rate/100 000 (incidence rate/100 000, 37)</td>
<td>Green & Siskind (1983)</td>
</tr>
<tr>
<td>Australia</td>
<td>Down</td>
<td>0.3</td>
<td>(0.1-1.1)</td>
<td>< 0.001</td>
<td>Age at arrival in Australia; OR given for age ≥ 30 years; p value for trend</td>
<td>Holman & Armstrong (1984b)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>2.8</td>
<td>(1.8-4.8)</td>
<td>< 0.001</td>
<td>Mean annual hours of bright sunlight at places of residence; p for trend</td>
<td>Holman & Armstrong (1984b)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>1.4</td>
<td>(0.9-2.0)</td>
<td>> 0.05</td>
<td>Ever resided below 40 °N latitude</td>
<td>Graham et al. (1985)b</td>
</tr>
<tr>
<td>Australia</td>
<td>Down</td>
<td>0.3</td>
<td>(0.1-1.4)</td>
<td>> 0.05</td>
<td>Length of residence in Australia; risk associated with migration to Australia</td>
<td>Green et al. (1986)</td>
</tr>
<tr>
<td>Denmark</td>
<td>Up</td>
<td>1.7</td>
<td>(1.1-2.7)</td>
<td>0.006</td>
<td>Residence near coast; crude OR</td>
<td>Østerlind et al. (1988b)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.2</td>
<td>(1.1-4.2)</td>
<td>0.02</td>
<td>Residence in southerly latitude at age 15-20, OR for 12.6 °</td>
<td>Weinstock et al. (1989)</td>
</tr>
<tr>
<td>Biological markers of cumulative sun exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>2.7</td>
<td>(1.4-5.0)</td>
<td>0.003</td>
<td>Cutaneous microtopography; p for trend</td>
<td>Holman & Armstrong (1984b)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>3.7</td>
<td>(2.1-6.6)</td>
<td>< 0.001</td>
<td>History of nonmelanocytic skin cancer</td>
<td>Holman & Armstrong (1984b)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>3.6</td>
<td>(1.8-7.3)</td>
<td>< 0.001</td>
<td>Actinic tumours on face</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>5.0</td>
<td>(2.3-10.5)</td>
<td>< 0.01</td>
<td>History of solar keratosis</td>
<td>Green & O'Rourke (1985)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>3.8</td>
<td>(1.2-12.4)</td>
<td>0.03</td>
<td>History of nonmelanocytic skin cancer. adjusted</td>
<td>Holly et al. (1987)</td>
</tr>
<tr>
<td>Denmark</td>
<td>Flat</td>
<td>1.1</td>
<td>(0.7-1.8)</td>
<td>> 0.05</td>
<td>Cutaneous microtopography; crude OR</td>
<td>Østerlind et al. (1988b)</td>
</tr>
</tbody>
</table>

*aOdds ratio for maximal category
*bResults calculated by Armstrong (1988)
(iii) **Total sun exposure assessed by questionnaire**

The results of studies in which total sun exposure was assessed using questionnaires, either over lifetime or at different periods of life, have been mixed (Table 18). Positive associations were seen by Green (1984) in Queensland, Australia; no consistent overall association was seen in western Canada, and in Western Australia the association was negative. The results of the other studies are similarly mixed. This inconsistency, in contrast to the results noted above by place of residence and by biological response, could be due either to the difficulty of assessing total sun exposure by questionnaires (Armstrong, 1988) or to different effects of differing patterns of exposure to the sun.

(iv) **Short periods of residence implying high potential exposure**

Several case-control studies have reported, usually as incidental findings, that subjects who have had a short period of residence in tropical or sub-tropical environments have an increased risk for melanoma (Table 19).

(v) **Occupational exposure**

Regular outdoor occupational exposure is probably the most convenient measure of relatively constant sun exposure and has been assessed with differing degrees of detail, from simple questions on ever/never or a basic amount of outdoor exposure, to detailed assessments involving assessments of clothing habits, geographical location of work and so on. The results appear to be inconsistent (Table 20). The more detailed studies, however, show more consistency, with a significant negative association, particularly in men, who constitute most of the highly exposed subjects (Table 21).

An overall irregular pattern was seen in western Canada, probably because individuals with relatively little occupational exposure are those who perform outdoor work seasonally or for short periods, often in early life, so that this exposure may be an indication of intermittent rather than constant exposure (Elwood et al., 1985b). Such results are consistent with the effects of a short period of residence in a sunny place, as reviewed earlier. Paffenbarger et al. (1978) also showed that students who recorded outdoor work before college [presumably summer employment] had a significantly increased risk of melanoma in later life.

(vi) **Intermittent exposure**

To assess the effects of intermittent exposure, investigators have asked questions about specific activities that would be likely to represent relatively severe intermittent exposure, such as sunbathing, or asked particularly about holidays in sunny places, or used more complex questionnaires to attempt to assess total intermittent exposure through recreational or holiday activities. Most of these studies show positive associations, but few show large effects (Table 22).

In general, the more detailed studies show reasonably consistent positive results. For example, in western Canada, significant positive associations were seen with recreational and holiday sun exposures in activities involving reasonably intense sun exposure, such as beach activities (Elwood et al., 1985b). In Denmark, rather similar relative risks of 1.5–1.9 were seen with regular participation in activities such as sunbathing, boating, skiing, swimming and vacations in sunny places (Østerlind et al., 1988b). Significant positive associations with sunbathing were seen in the Swedish study of Beitner et al. (1990). In the study of Zanetti et al.
Table 18. Results of case-control studies on melanoma: total sun exposure assessed by questionnaire

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>OR(^a)</th>
<th>95% CI</th>
<th>(p) value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.5</td>
<td>NA</td>
<td>< 0.001</td>
<td>Sun exposure 2 h/day, 11–20 years previously</td>
<td>Rigel et al. (1983)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>5.3</td>
<td>0.9–30.8</td>
<td>NA</td>
<td>Total sun exposure throughout life > 50 000 h, adjusted</td>
<td>Green (1984)</td>
</tr>
<tr>
<td>Canada</td>
<td>Weakly up</td>
<td>1.2</td>
<td>0.7–2.0</td>
<td>> 0.1</td>
<td>Hours of sun exposure per year, (p) for trend</td>
<td>Elwood et al. (1985b)</td>
</tr>
<tr>
<td>USA</td>
<td>Down</td>
<td>0.6</td>
<td>0.4–0.9</td>
<td>< 0.05</td>
<td>Total sun exposure throughout life</td>
<td>Graham et al. (1985)(^b)</td>
</tr>
<tr>
<td>USA</td>
<td>Weakly up</td>
<td>1.1</td>
<td>0.6–2.1</td>
<td>> 0.05</td>
<td>Hours of sun exposure 0–5 years previously, > 5 h/day</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>USA</td>
<td>Down</td>
<td>0.85</td>
<td>0.5–1.4</td>
<td>> 0.05</td>
<td>Hours of sun exposure 11–20 years previously, > 5 h/day</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>USA</td>
<td>Weakly up</td>
<td>1.1</td>
<td>0.8–1.6</td>
<td>> 0.05</td>
<td>Lifetime sun exposure</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>Australia</td>
<td>Down</td>
<td>0.7</td>
<td>0.4–1.1</td>
<td>0.13</td>
<td>Mean total outdoor hours/week in summer, > 23 h/week; (p) for trend</td>
<td>Holman et al. (1986a)</td>
</tr>
<tr>
<td>Italy</td>
<td>Down</td>
<td>0.7</td>
<td>0.4–1.1</td>
<td>> 0.05</td>
<td>Heavy or frequent exposure in previous 20 years</td>
<td>Cristofolini et al. (1987)</td>
</tr>
<tr>
<td>France</td>
<td>Up</td>
<td>3.4</td>
<td>1.6–7.1</td>
<td>< 0.05</td>
<td>Total lifetime outdoor sun exposure, adjusted</td>
<td>Grob et al. (1990)</td>
</tr>
</tbody>
</table>

\(^a\)Odds ratio for maximal category

\(^b\)Results calculated by Armstrong (1988)
Table 19. Evidence of melanoma risk with short periods of residence implying high potential exposure

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Up</td>
<td>[7.7]</td>
<td>2.5-23.6</td>
<td>0.0002</td>
<td>US service: tropics versus USA/Europe</td>
<td>Brown et al. (1984)</td>
</tr>
<tr>
<td>UK</td>
<td>Up</td>
<td>1.8</td>
<td>0.6-5.1</td>
<td>> 0.05</td>
<td>≥ 1 year living in tropics, subtropics</td>
<td>Elwood (1986)</td>
</tr>
<tr>
<td>Scotland</td>
<td>Up</td>
<td>2.6 (males)</td>
<td>1.3-5.4</td>
<td>< 0.05</td>
<td>> 5 years living in tropics, subtropics; crude OR</td>
<td>MacKie et al. (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 (females)</td>
<td>0.8-4.0</td>
<td>> 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Up</td>
<td>1.9</td>
<td>1.0-3.6</td>
<td>< 0.05</td>
<td>Living in Mediterranean, tropics, subtropics > 1 year in last 10 years</td>
<td>Beitner et al. (1990)</td>
</tr>
</tbody>
</table>
Table 20. Results of case-control studies on melanoma: occupational exposure

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>OR(^a)</th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Up</td>
<td>3.9</td>
<td>NR</td>
<td>0.01</td>
<td>Outdoor work recorded at college medical examination; prospective</td>
<td>Paffenbarger et al. (1978)</td>
</tr>
<tr>
<td>Norway</td>
<td>Up</td>
<td>1.4</td>
<td>0.6–3.5</td>
<td>0.37</td>
<td>At least 3–4 h of outdoor work a day</td>
<td>Klepp & Magnus (1979)(^b)</td>
</tr>
<tr>
<td>Scotland</td>
<td>Down</td>
<td>0.5</td>
<td>0.2–1.2</td>
<td>> 0.05</td>
<td>Hours of outdoor occupation a week</td>
<td>MacKie & Aitchison (1982)(^b)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>1.2</td>
<td>NR</td>
<td>> 0.05</td>
<td>Outdoor occupation versus indoor</td>
<td>Rigel et al. (1983)</td>
</tr>
<tr>
<td>Canada</td>
<td>Irregular</td>
<td>0.9</td>
<td>0.6–1.5</td>
<td>< 0.01</td>
<td>Hours of outdoor occupation a week in summer</td>
<td>Elwood et al. (1985b)</td>
</tr>
<tr>
<td>USA</td>
<td>Down</td>
<td>0.7</td>
<td>0.3–1.3</td>
<td>> 0.05</td>
<td>Lifetime hours of outdoor occupation</td>
<td>Graham et al. (1985)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.5</td>
<td>1.4–4.4</td>
<td>< 0.05</td>
<td>Mostly outdoors; multiple logistic OR = 2.4, p < 0.05</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>UK</td>
<td>Irregular</td>
<td>1.7</td>
<td>0.3–8.6</td>
<td>0.5</td>
<td>Lifetime hours of outdoor occupation</td>
<td>Elwood et al. (1986)</td>
</tr>
<tr>
<td>Australia</td>
<td>Down</td>
<td>0.5</td>
<td>NR</td>
<td>0.04</td>
<td>Mean hours of outdoor occupation a week in summer</td>
<td>Holman et al. (1986a)</td>
</tr>
<tr>
<td>Denmark</td>
<td>Down</td>
<td>0.7</td>
<td>0.5–0.9</td>
<td>< 0.05</td>
<td>Outdoor occupation versus indoor</td>
<td>Østerlind et al. (1988b)</td>
</tr>
<tr>
<td>Italy</td>
<td>Irregular</td>
<td>2.1</td>
<td>0.6–6.8</td>
<td>0.32</td>
<td>Outdoor occupation</td>
<td>Zanetti et al. (1988)</td>
</tr>
<tr>
<td>Germany</td>
<td>Up</td>
<td>5.5</td>
<td>1.2–25.3</td>
<td>< 0.05</td>
<td>Outdoor occupation; adjusted OR = 11.6 (2.1–63.3)</td>
<td>Garbe et al. (1989)</td>
</tr>
<tr>
<td>Sweden</td>
<td>Down</td>
<td>0.6</td>
<td>0.4–1.0</td>
<td>NR</td>
<td>Outdoor occupation, yes/no</td>
<td>Beitner et al. (1990)</td>
</tr>
<tr>
<td>France</td>
<td>Up</td>
<td>6.0</td>
<td>2.1–17.4</td>
<td>< 0.05</td>
<td>Outdoor occupation versus indoor</td>
<td>Grob et al. (1990)</td>
</tr>
</tbody>
</table>

NR, not reported

\(^a\)Odds ratio for maximal category

\(^b\)Calculated by Armstrong (1988)
Table 21. Results of case-control studies on different types of melanoma and occupational exposure

<table>
<thead>
<tr>
<th>Place</th>
<th>Type of melanoma</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Excluding LMM and ALM</td>
<td>0.5</td>
<td>[0.3–1.0]</td>
<td>NR</td>
<td>> 32 h outdoor occupation a week in summer (men)</td>
<td>Elwood et al. (1985b)</td>
</tr>
<tr>
<td>Queensland, Australia</td>
<td>Excluding LMM and ALM</td>
<td>No association</td>
<td></td>
<td></td>
<td>Outdoor occupation</td>
<td>Green et al. (1986)</td>
</tr>
<tr>
<td>Western Australia</td>
<td>SSM</td>
<td>0.5</td>
<td>NR</td>
<td>0.04 for trend</td>
<td>Top quartile, hours of outdoor occupation a week in summer</td>
<td>Holman et al. (1986a)</td>
</tr>
<tr>
<td>Denmark</td>
<td>Excluding LMM and ALM</td>
<td>0.7</td>
<td>0.5–0.9</td>
<td>< 0.05</td>
<td>Outdoor occupation (men)</td>
<td>Østerlind et al. (1988b)</td>
</tr>
</tbody>
</table>

LMM, lentigo maligna melanoma; ALM, acral lentiginous melanoma; SSM, superficial spreading melanoma; NR, not reported
<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>ORa</th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>Up</td>
<td>2.4</td>
<td>1.0–5.8</td>
<td>0.06</td>
<td>Sunbathing holidays in southern Europe in previous 5 years</td>
<td>Klepp & Magnus (1979)b</td>
</tr>
<tr>
<td>UK</td>
<td>Up</td>
<td>1.5</td>
<td>0.9–2.5</td>
<td>0.16</td>
<td>Spent some time deliberately tanning their legs</td>
<td>Adam et al. (1981)b</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.6</td>
<td>1.0–2.5</td>
<td>0.05</td>
<td>Spent some time deliberately tanning their trunk</td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td>Down</td>
<td>0.4</td>
<td>0.2–0.9</td>
<td>< 0.05</td>
<td>Hours a week in outdoor recreation</td>
<td>Mackie & Aitchison (1982)b</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.5</td>
<td>1.1–5.8</td>
<td>< 0.05</td>
<td>Days of vacation in a sunny warm place in childhood</td>
<td>Lew et al. (1983)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.4</td>
<td>NR</td>
<td>0.01</td>
<td>Outdoor versus indoor recreation</td>
<td>Rigel et al. (1983)</td>
</tr>
<tr>
<td>Canada</td>
<td>Up</td>
<td>1.7</td>
<td>1.1–2.7</td>
<td>< 0.01</td>
<td>Hours of high exposure in recreational activities per week in summer</td>
<td>Elwood et al. (1985b)</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.5</td>
<td>1.0–2.3</td>
<td>< 0.01</td>
<td>Hours of high and moderate exposure in recreational activities per day in summer vacations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.7</td>
<td>1.2–2.3</td>
<td>< 0.001</td>
<td>Number of sunny vacations per decade</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Up</td>
<td>5</td>
<td>NR</td>
<td>> 0.05</td>
<td>Number of holidays abroad in hot climate; adjusted</td>
<td>Sorahan & Grimley (1985)</td>
</tr>
<tr>
<td>USA</td>
<td>Irregular</td>
<td>1.7</td>
<td>1.2–2.2</td>
<td>< 0.01</td>
<td>Recreation type; multiple logistic OR, 1.0</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td>Australia</td>
<td>Irregular</td>
<td>1.9</td>
<td>0.5–7.4</td>
<td>0.62</td>
<td>Recreational hours spent in sun on beach over whole life; crude RR</td>
<td>Green et al. (1986)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>1.3</td>
<td>0.9–1.9</td>
<td>0.25</td>
<td>Proportion of recreational outdoor exposure in summer at 10-24 years of age; p for trend</td>
<td>Holman et al. (1986a)</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>2.4</td>
<td>1.1–5.4</td>
<td>0.04</td>
<td>Boating in summer; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>2.7</td>
<td>1.2–6.4</td>
<td>0.07</td>
<td>Fishing in summer; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>1.1</td>
<td>0.7–1.8</td>
<td>0.66</td>
<td>Swimming in summer; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.3</td>
<td>0.8–2.2</td>
<td>0.26</td>
<td>Sunbathing in summer at 15–24 years of age; p for trend</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Up</td>
<td>1.9</td>
<td>1.3–2.9</td>
<td>0.004</td>
<td>Sunbathing; crude RR; p for trend</td>
<td>Østerlind et al. (1988b)</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.7</td>
<td>1.1–2.8</td>
<td>0.012</td>
<td>Boating; crude RR; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.5</td>
<td>0.9–2.4</td>
<td>0.006</td>
<td>Sking; crude RR; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.5</td>
<td>1.2–2.0</td>
<td>0.004</td>
<td>Swimming (outdoors); crude RR; p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.7</td>
<td>1.2–2.4</td>
<td>< 0.01</td>
<td>Vacations in sunny resorts; crude RR; p for trend</td>
<td></td>
</tr>
<tr>
<td>Place</td>
<td>Direction of association</td>
<td>OR</td>
<td>95% CI</td>
<td>p value</td>
<td>Measurement of exposure</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Italy</td>
<td>Irregular</td>
<td>2.6</td>
<td>1.0–6.9</td>
<td>0.003</td>
<td>Years of outdoor sport (men); p for trend</td>
<td>Zanetti et al. (1988)</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>3.8</td>
<td>1.1–13.0</td>
<td>NR</td>
<td>High-exposure sports (men)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>1.9</td>
<td>0.6–5.8</td>
<td>0.27</td>
<td>Total weeks' vacation (men); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>3.7</td>
<td>1.4–9.7</td>
<td>0.001</td>
<td>Weeks' vacation near sea; early life (men); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.6</td>
<td>0.7–3.6</td>
<td>0.77</td>
<td>Weeks' vacation near sea; adult life (men); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>2.1</td>
<td>0.6–7.9</td>
<td>0.37</td>
<td>Years of outdoor sport (women); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>2.3</td>
<td>0.6–9.1</td>
<td>NR</td>
<td>High-exposure sports (women)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>1.1</td>
<td>0.5–2.4</td>
<td>0.56</td>
<td>Total weeks' vacation (women); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.2</td>
<td>0.6–2.5</td>
<td>0.56</td>
<td>Weeks' vacation near sea; early life (women); p for trend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.5</td>
<td>0.9–2.7</td>
<td>0.16</td>
<td>Weeks' vacation near sea; adult life (women); p for trend</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>No association</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Free-time sun exposure</td>
<td>Garbe et al. (1989)</td>
</tr>
<tr>
<td>Sweden</td>
<td>Up</td>
<td>1.8</td>
<td>1.2–2.6</td>
<td>< 0.05</td>
<td>Number of sunbaths per summer</td>
<td>Beitner et al. (1990)</td>
</tr>
<tr>
<td>France</td>
<td>Up</td>
<td>2.4</td>
<td>1.5–3.8</td>
<td>< 0.05</td>
<td>Sunbathing vacations abroad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>8.4</td>
<td>3.6–19.7</td>
<td>< 0.05</td>
<td>Outdoor leisure exposure</td>
<td>Grob et al. (1990)</td>
</tr>
</tbody>
</table>

NR, not reported
"Odds ratio for maximal category
*Calculated by Armstrong (1988)
(1988) in Turin, Italy, positive associations were seen with doing an outdoor sport for many years and with number of weeks of holidays spent near the sea. These consistently positive associations contrast with the less consistent pattern seen in Australia. In Western Australia, stronger associations are seen with boating and fishing than with swimming and sunbathing, which would be expected to involve more intense exposure to the sun, and only a weak association was seen with the proportion of outdoor time spent on recreational activities in teenage and early adult years (Holman et al., 1986a). In Queensland, Green et al. (1986) found only irregular associations with recreational hours spent at the beach or in other activities with intense exposure to the sun. This finding might be consistent with the concept that, in a sunny environment, recreational activities may involve sufficient frequency or intensity of sun exposure to result in a constant rather than an intermittent dose pattern.

(vii) Sunburn

Most of the studies show positive associations between risk for melanoma and a history of sunburn (Table 23). The questionnaires usually defined very severe sunburn as a burn that causes pain lasting for at least two days or blistering. The greater consistency of this relationship compared to that with intermittent exposure may indicate a specific association with sunburn per se or that sunburn is simply a more easily remembered measure of intermittent and/or intense exposure to the sun.

A history of sunburn indicates both unusually intense exposure and skin sensitivity, and therefore studies which assess sunburn while controlling for sensitivity through a separate question on tendency to burn are important. Both the western Canada and Western Australia studies when analysed in this way show that the association is primarily with tendency to burn rather than with a history of sunburn (Elwood et al., 1985a; Holman et al., 1986a). The studies in Queensland, Denmark and Scotland, however, show strong associations with sunburn history even after controlling for tendency to burn and other measures of skin sensitivity.

Because sensitivity to the sun and sunburn are likely to be highly correlated and both are likely to be measured with a degree of error, it is difficult to distinguish their effects. Similarly, sunburn is likely to be confounded with intermittent exposure of a less intense nature, from which it cannot readily be distinguished because of measurement error (Armstrong, 1988).

The study in England by Elwood et al. (1990) assessed sunburn at different ages and showed the strongest association with sunburn at ages 8–12; a stronger association with sunburns at young age was also seen by Weinstock et al. (1989) and by Østerlind et al. (1988b).

2.1.4 Malignant melanoma of the eye

(a) Case reports

In general, case reports were not considered, owing to the availability of more informative data.

Kraemer et al. (1987) reported on 830 cases of xeroderma pigmentosum, with a median age of 12 years at last observation, located through a survey of published case reports. Ocular abnormalities were found in 328 of 337 patients on whom information was available. Of these, 88 were reported to have some form of ocular neoplasm, mostly in the limbus, cornea and conjunctiva. Five of these patients were reported as having ocular melanoma; only one
Table 23. Results of case-control studies on melanoma: history of sunburn

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>OR (^a)</th>
<th>95% CI</th>
<th>(p) value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scotland</td>
<td>Up</td>
<td>2.8</td>
<td>1.1-7.4</td>
<td>< 0.05</td>
<td>Blistering sunburn or erythema persisting > 1 week</td>
<td>MacKie & Aitchison (1982)</td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.1</td>
<td>1.2-3.6</td>
<td>< 0.05</td>
<td>Blistering sunburn during adolescence (yes/no)</td>
<td>Lew et al. (1983)</td>
</tr>
<tr>
<td>Canada</td>
<td>Up</td>
<td>1.8</td>
<td>1.1-3.0</td>
<td>< 0.01</td>
<td>Vacation sunburn score</td>
<td>Elwood et al. (1985a)</td>
</tr>
<tr>
<td>Australia</td>
<td>Up</td>
<td>2.4</td>
<td>1.0-6.1</td>
<td>< 0.05</td>
<td>Number of severe sunburns throughout life</td>
<td>Green et al. (1985a)</td>
</tr>
<tr>
<td>UK</td>
<td>Up</td>
<td>4.2</td>
<td>NR</td>
<td>< 0.01</td>
<td>Bouts of painful sunburn; adjusted</td>
<td>Sorahan & Grimley (1985)</td>
</tr>
<tr>
<td>Canada</td>
<td>Up</td>
<td>3.2</td>
<td>1.7-5.9</td>
<td>< 0.001</td>
<td>Sunburn causing pain for ≥ 2 days</td>
<td>Elwood et al. (1986)</td>
</tr>
<tr>
<td>Australia</td>
<td>Irregular</td>
<td>0.9</td>
<td>0.5-1.5</td>
<td>0.43</td>
<td>Sunburn causing pain for ≥ 2 days, during last 10 years</td>
<td>Holman et al. (1986)</td>
</tr>
<tr>
<td>Italy</td>
<td>Up</td>
<td>1.2</td>
<td>0.6-2.3</td>
<td>0.1</td>
<td>Sunburn causing pain for ≥ 2 days, < 10 years of age</td>
<td>Cristofolini et al. (1987)</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>0.7</td>
<td>0.4-1.2</td>
<td>> 0.05</td>
<td>Severe sunburn in adolescence or early adult life (yes/no)</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Up</td>
<td>1.2</td>
<td>0.7-2.1</td>
<td>> 0.05</td>
<td>Sunburn as an adult (yes/no)</td>
<td>Holly et al. (1987)</td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>3.8</td>
<td>1.4-10.4</td>
<td>NA</td>
<td>Number of blistering sunburns up to adult age, adjusted</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Up</td>
<td>3.7</td>
<td>2.3-6.1</td>
<td>< 0.001</td>
<td>Sunburn causing pain for ≥ 2 days, < 15 years of age</td>
<td>Østerlind et al. (1988)</td>
</tr>
<tr>
<td>Italy</td>
<td>Up (men)</td>
<td>3.0</td>
<td>1.6-5.4</td>
<td>< 0.001</td>
<td>Sunburn causing pain for ≥ 2 days, during previous 10 years</td>
<td>Zanetti et al. (1988)</td>
</tr>
<tr>
<td></td>
<td>Up (women)</td>
<td>4.1</td>
<td>1.8-9.2</td>
<td>< 0.05</td>
<td>Sunburn in childhood (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up (women)</td>
<td>2.7</td>
<td>1.3-5.6</td>
<td>< 0.05</td>
<td>Number of sunburns</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>No association</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Number of episodes of severe sunburn, any age, adjusted</td>
<td>Garbe et al. (1989)</td>
</tr>
<tr>
<td>Scotland</td>
<td>Up (men)</td>
<td>7.6</td>
<td>1.8-3.2</td>
<td>NR</td>
<td>Number of episodes of severe sunburn, any age, adjusted</td>
<td>MacKie et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>Up (women)</td>
<td>2.3</td>
<td>0.9-5.6</td>
<td>NR</td>
<td>Number of episodes of severe sunburn, any age, adjusted</td>
<td></td>
</tr>
</tbody>
</table>
Table 23 (contd)

<table>
<thead>
<tr>
<th>Place</th>
<th>Direction of association</th>
<th>OR<sup>a</sup></th>
<th>95% CI</th>
<th>p value</th>
<th>Measurement of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Up</td>
<td>2.2</td>
<td>1.2-3.8</td>
<td>0.01</td>
<td>Number of blistering sunburns at ages 15-20</td>
<td>Weinstock et al. (1989)</td>
</tr>
<tr>
<td>Sweden</td>
<td>Up</td>
<td>1.7</td>
<td>1.0-2.9</td>
<td>NR</td>
<td>Erythema after sunbathing</td>
<td>Beitner et al. (1990)</td>
</tr>
<tr>
<td>UK</td>
<td>Up</td>
<td>3.6</td>
<td>1.4-11.2</td>
<td>< 0.05</td>
<td>Moderate sunburn at ages 8-12 (yes/no)</td>
<td>Elwood et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>No association</td>
<td>1.0</td>
<td>0.6-2.0</td>
<td>> 0.05</td>
<td>Moderate/maximum sunburn at ages 18-20 (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.8</td>
<td>0.9-3.7</td>
<td>> 0.05</td>
<td>Moderate/maximum sunburn 18-20 yrs before diagnosis (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up</td>
<td>1.2</td>
<td>0.6-2.3</td>
<td>> 0.05</td>
<td>Moderate/maximum sunburn 5 years before diagnosis (yes/no)</td>
<td></td>
</tr>
</tbody>
</table>

NR, not reported

^aOdds ratio for maximal category

^bData calculated by Armstrong (1988)

^cExposure to fluorescent and other lighting sources
was specified as being of uveal origin. [The Working Group recognized that data collected from previously published case reports is not uniform and may not be typical of a true incidence or prevalence series. Furthermore, no information is available on the relationship between solar exposure and the occurrence of ocular melanoma in these patients.]

(b) *Descriptive studies*

As there is no separate ICD code for intra-ocular melanoma, descriptive data for cancer of the eye (ICD-9 190) as a whole have been used as a surrogate. Intra-ocular melanoma comprises some 80% of tumours of the orbit of the eye (Österlind, 1987), and cancer of the eye has been used as a surrogate for adult ocular melanoma in previous studies (Swerdlow, 1983a,b).

(i) *Ethnic origin*

Examination of incidence figures from many parts of the world reveals higher rates of ocular tumours in whites than in blacks or Asians residing at the same latitude and under similar conditions (Waterhouse et al., 1976; Muir et al., 1987).

(ii) *Place of birth and residence*

When rates for whites are evaluated separately, no variation in incidence rates for ocular tumours is seen with decreasing latitude in the northern hemisphere (Table 24). Similarly, no incidence grading was seen among whites in the USA (Table 25). The more northerly states of Australia do not show higher incidence rates for ocular tumours than the southern states (Table 25).

Table 24. Trends in cancer of the eye for whites by latitude and by time period (rates per 100 000 age standardized to UICC ‘world population’)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Area</th>
<th>~ 1968–72<sup>a</sup></th>
<th>~ 1972–77<sup>b</sup></th>
<th>~ 1977–82<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>56 °–61 °N</td>
<td>Denmark</td>
<td>1.4</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td>1.3</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>47 °–55 °N</td>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>British Columbia</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Alberta</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Saskatchewan</td>
<td>1.3</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Manitoba</td>
<td>1.7</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>46 °N</td>
<td>Geneva, Switzerland</td>
<td>0.4</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>38 °N</td>
<td>San Francisco, CA, USA</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>35 °N</td>
<td>New Mexico, USA</td>
<td>1.0</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>32 °–38 °S</td>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New South Wales</td>
<td>NR</td>
<td>NR</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>South Australia</td>
<td>NR</td>
<td>NR</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 24 (contd)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Area</th>
<th>~ 1968–72a</th>
<th>~ 1972–77b</th>
<th>~ 1977–82c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>22 °S</td>
<td>Hawaii, USA</td>
<td>0.4 0.2</td>
<td>1.2 0.2</td>
<td>1.0 0.0</td>
</tr>
<tr>
<td>3 °S</td>
<td>Cali, Colombia</td>
<td>0.6 0.2</td>
<td>0.4 0.5</td>
<td>0.5 0.5</td>
</tr>
</tbody>
</table>

NR, not reported

a From Waterhouse et al. (1976)
b From Waterhouse et al. (1982)
c From Muir et al. (1987)

Table 25. Incidence of cancer of the eye (ICD-9 190) in US and Australian whites 1978–82 in various locations by latitude

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Location</th>
<th>Male rate/100 000</th>
<th>Female rate/100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 °N</td>
<td>Seattle</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>42 °N</td>
<td>Detroit</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>42 °N</td>
<td>Iowa</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>41 °N</td>
<td>Connecticut</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>41 °N</td>
<td>New York City</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>41 °N</td>
<td>Utah</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>38 °N</td>
<td>San Francisco Bay Area</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>35 °N</td>
<td>New Mexico</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>34 °N</td>
<td>Los Angeles</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>33 °N</td>
<td>Atlanta</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>22 °N</td>
<td>Hawaii</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 °S</td>
<td>Tasmania</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>38 °S</td>
<td>Victoriaa</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>34 °S</td>
<td>South Australia</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>33 °S</td>
<td>New South Wales</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>32 °S</td>
<td>Western Australia</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>28 °S</td>
<td>Queenslanda</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

From Muir et al. (1987); rates standardized to UICC ‘world population’

Data available only for 1982

Schwartz and Weiss (1988) compared the state of birth of 763 white (not of Spanish origin) US patients with uveal melanoma diagnosed between 1973 and 1984 and identified in nine cancer registries with those of the whites covered by the registries as recorded in the 1980 census. Patients with unknown or foreign birthplace or non-uveal ocular melanomas were excluded. Risk estimates were adjusted for age, sex and residence. The odds ratio for subjects born in the southern USA (south of 40 °N) was 1.1 (95% CI, 0.8–1.5). When states
were classified according to average daily global solar radiation, a nonsignificant gradient was observed, only among women (odds ratio for > 15 500 kJ/m² versus ≤ 12 300 kJ/m², 1.6; 95% CI, 0.7–3.6).

Mack and Floderus (1991) examined birthplace and residence of patients diagnosed with intra-ocular melanoma among non-latino whites in 1972–82 in Los Angeles County. The proportional incidence ratio was not higher for cases born in California and Arizona than for those born in more northerly areas.

Doll (1991) observed a small rural excess in the incidence of cancer of the eye compared with urban residence, in a number of countries.

(iii) Occupation

Four studies of occupational mortality and one of incidence gave inconsistent results with regard to ocular cancer. Two investigations using proportional mortality ratios demonstrated more deaths from ocular cancer than expected among male farmers (Saftlas et al., 1987; Gallagher, 1988), a group likely to have substantial exposure to solar UVR. These findings were not confirmed, however, in two other studies using similar methods (Milham, 1983; Office of Population Censuses and Surveys, 1986).

An investigation of ocular melanoma carried out on data from the cancer registry of England and Wales did not show an elevated incidence in farmers, but an increased risk was seen for professionals (relative risk, 124; 95% CI, 99–153), which was significant for teachers (177; 120–248) (Vägerö et al., 1990).

(iv) History of skin cancer

Cancer registry-based studies (Österlind et al., 1985; Tucker et al., 1985a; Holly et al., 1991) found no or a nonsignificant (Lischko et al., 1989) association between the occurrence of cancer of the eye and cutaneous melanoma or nonmelanocytic skin cancer. A single investigation of 400 sequential cases of uveal melanoma (Turner et al., 1989) suggested that intra-ocular melanoma patients have an elevated frequency of prior cutaneous melanoma. Thus, although one study indicated a possible association, the overall evidence does not support an association between ocular melanoma and either melanoma or nonmelanocytic skin cancer.

(c) Case–control studies

Four case–control studies were evaluated. The first study (Gallagher et al., 1985) evaluated all ocular melanomas, while the other three (Tucker et al., 1985b; Holly et al., 1990; Seddon et al., 1990) studied uveal melanomas (excluding conjunctival melanomas).

Gallagher et al. (1985) conducted a study of ocular melanoma in patients diagnosed in the four western provinces in Canada between 1 April 1979 and 31 March 1981. Of the 90 ascertained cases, 87 were eligible by age for interview (20–79 years); of these, 65 cases (75%) were actually interviewed. For each case, a single control was randomly selected from the general population, matched by age (± 2 years), sex and province of residence. Response rates for controls were 59% for Alberta, Saskatchewan and Manitoba and 48% for British Columbia. Personal interviews were conducted in subjects’ homes, and conditional logistic regression was used to control for matching variables and eye, hair and skin colour. No significant association was seen between ocular melanoma and either intermittent (occupational,
A strong association was detected between ocular melanoma and blue or grey iris colour (crude odds ratio, 3.0; \(p = 0.04 \)) and blond or red hair colour (crude odds ratio, 7.7; \(p = 0.03 \)). (In a multivariate analysis, these odds ratios became nonsignificant.) A nonsignificantly elevated risk (crude odds ratio, 2.8; \(p = 0.08 \)) for ocular melanoma was also seen for subjects with light skin colour by comparison with subjects with darker skin.

A case-control study conducted by Tucker et al. (1985b) evaluated risk factors in 444 white patients with intra-ocular (uveal) melanoma treated at the Wills Eye Hospital in Philadelphia, USA, and 424 controls with detached retinas seen at the same centre. The Working Group noted that use of a single disease category for the controls could introduce spurious associations with risk factors for that condition. Response rates were 89% for cases and 85% for controls. Interviews were conducted by telephone; interviews were with next-of-kin for 17% of the cases and 14% of the controls. Logistic regression models were fitted which included sun-exposure variables, age, sex, eye colour and presence of cataracts, which was included to reduce bias in view of the association between cataracts and detached retina. Sunbathing appeared to increase the risk of intra-ocular melanoma, although no gradient of risk was noted with frequency of exposure (frequent versus never, odds ratio, 1.5; 95% CI, 0.9–2.3). A significantly elevated risk was detected for those who engaged in gardening (1.6; 1.0–2.4), but similar associations were not seen for other recreational outdoor activities, such as fishing, camping and hunting. Cases of intra-ocular melanoma also reported increased exposure to the sun during vacations in comparison with controls, with an odds ratio of 1.5 (95% CI, 0.97–2.3) for subjects ‘frequently’ experiencing increased exposure versus subjects never exposed (test for linear trend over four strata, \(p = 0.01 \)). Cases reported less frequent use of eye protection (sunglasses, headgear, visors) when outdoors as compared with controls, but there was no dose–response relationship with frequency of use of these protective devices. A gradient of risk was seen with use of any eye shading when iris melanomas were examined separately, suggesting that eye shading may have been specifically important for lesions at the front of the eye (never versus occasional use of eye protection, odds ratio, 4.9; 95% CI, 1.4–13.7). [Numbers of iris melanomas were not given.] Subjects who were born in the southern USA (lower than 40 °N latitude) were found to have a significantly elevated risk of intra-ocular melanoma (2.7; 1.3–5.9) after adjustment for number of years spent in the south and for the presence of cataracts; with adjustment for all other sun-related variables, the odds ratio was 3.2 (95% CI, 1.8–5.7). The association persisted after excluding subjects not living close to Philadelphia. There was no relation between the number of years spent in the south and the risk of intraocular malignant melanoma, after adjustment for having been born in the south. Blue-eyed subjects had the highest risk of intra-ocular melanoma, with grey-green and hazel-eyed subjects at intermediate risk, and brown-eyed subjects at lowest risk (unadjusted odds ratio for brown- versus blue-eyed subjects, 0.6; 95% CI, 0.4–0.8). Cases were more likely than controls to have fair skin and blond or brown hair, although no odds ratios are given and the differences disappeared when eye colour was taken into account. Cases were also more likely to have 25 or more freckles (used as an indirect measure of sun exposure and sensitivity) than controls (odds ratio, 1.4; 95% CI, 1.0–2.0).

A case–control study by Holly et al. (1990) involved 407 white cases of uveal melanoma and 870 controls. The cases were diagnosed between January 1978 and February 1987 at the
Ocular Oncology Unit of the University of California, San Francisco, USA, were aged 20–74 at diagnosis and lived in 11 western states. Controls were selected by random digit dialling and were matched to cases on age and area of residence. Telephone interviews were conducted by interviewers unaware of the study hypotheses, most cases being interviewed within four years of their diagnosis. The response rate was 93% of cases and 77% of eligible controls. No clear association was seen between uveal melanoma and vacation time spent in sunny climates or high proportion of leisure time spent outdoors. Individuals who spent 50% of their leisure time indoors and 50% outdoors had a reduced risk for uveal melanoma (odds ratio, 0.6; 95% CI, 0.4–0.9) when compared to subjects who stayed mainly indoors. Significantly elevated risks were seen in subjects with grey, green, hazel or blue eyes, compared to those with brown eyes, with increasing frequency of large naevi (≥ 7 mm) (p = 0.04 for trend) and with a propensity to burn rather than tan in the sun.

Seddon et al. (1990) compared 197 white patients with uveal melanoma diagnosed in 1984–87, who were resident in the six New England states close to the Massachusetts Eye and Ear Infirmary, with 385 controls obtained through random digit dialling and matched to cases by age (± 8 years), sex and area of residence. All subjects were interviewed by telephone using a standard questionnaire. The response rate was 92% among cases, and 85% of the eligible controls contacted agreed to participate in the study. Matched logistic regression techniques were employed to evaluate potential associations between exposure to UVR and risk of uveal melanoma, adjusting for age, sex, constitutional factors and socioeconomic variables. An inverse association with southern birthplace (south of 40 °N latitude) was detected (odds ratio, 0.2; 95% CI, 0.0–0.7) after adjustment for constitutional and other factors. When cumulative lifetime residence in the south was examined, subjects who had lived for more than five years south of 40 °N had an odds ratio of 2.8 (95% CI, 1.1–6.9) after adjustment for birthplace. Several indices of sun exposure were computed for each subject. The first combined duration of residence in the north or south with self-reported severity of sun exposure (low, medium, high). Subjects in the highest exposure group appeared to have a higher risk of uveal melanoma by comparison with those in the lowest exposure category (1.7; 0.9–3.0) although no dose–response relationship was seen over the three categories of exposure. A further index was obtained by taking average values of solar radiation for each state in which the subject has resided and multiplying this value by the duration of residence within the state and the reported amount of time spent in the sun. No association was seen between this index and risk of uveal melanoma. Individuals who reported having spent a great deal of time working outdoors 15 years prior to diagnosis showed a somewhat lower risk of uveal melanoma than those who worked minimally outdoors or were retired (odds ratio, 0.6; 95% CI, 0.3–1.4) after control for age, skin, eye colour and southern residence. No association was seen with sunbathing, use of sunglasses or visors, or outdoor hobbies all conducted 15 years prior to diagnosis. Use of eye glasses was not related to uveal melanoma risk. Cases reported more cutaneous naevi and lighter skin colour than controls and were more likely to be of northern European or British ancestry than controls. An expanded analysis comparing 387 cases of uveal melanoma with 800 sibling controls was also conducted. There was a gradient of risk with cumulative years of intense sun exposure; the odds ratio for the highest exposure was 2.1 (1.4–3.2).
2.1.5 Other cancers

No adequate data were available to the Working Group.

2.2 Artificial sources of ultraviolet radiation

Epidemiological investigations that have attempted to assess exposure to artificial sources of UVR have neither measured actual UVR nor considered the emission spectra. It is presumed that in the studies described below, subjects were exposed to sources that varied in intensity and emission spectra.

2.2.1 Nonmelanocytic skin cancer

Three case-control studies, described in detail on p. 84, addressed this issue. In the study in Montréal, Canada, of Aubry and MacGibbon (1985), any use of a sunlamp gave an odds ratio of 13.4 [95% CI, 1.4–130.5] after adjustment for sun exposure and constitutional factors. O'Loughlin et al. (1985) in Ireland found that fewer cases than controls reported frequent exposure to 'artificial sunlight' (nonsignificant). In the study of Herity et al. (1989) in Ireland, a smaller proportion of cases than of controls reported ever having used sunlamps or sunbeds (p = 0.2).

2.2.2 Malignant melanoma of the skin

The results of case-control studies of exposure to fluorescent light and melanoma are summarized in Table 26.

Beral et al. (1982) conducted a case-control study in Sydney, Australia, of 274 female cases aged 18–54 identified at a melanoma clinic between 1978 and 1980 and 549 hospital and population controls matched by age and, for population controls, residence. The response rate for cases was 71% [response rates for controls not given]. Each job lasting 12 months or longer was recorded, together with information about whether the work had been carried out predominantly indoors or outdoors, whether fluorescent lighting was present, and whether the fluorescent lights were switched on most of the time or less frequently. Among women who always worked indoors, the odds ratio increased with duration of working with fluorescent lights most of the time to a maximum of 2.6 (95% CI, 1.2–5.9) for 20 or more years' exposure. The effect was greater for office workers (odds ratio, 4.3) than for other indoor workers (2.0). Stratification by amount of time spent outdoors, main outdoor activity and amount of clothing worn, history of sunburn, place of birth, hair colour and skin colour did not diminish the association. Among cases exposed to fluorescent lights, there was a relative excess of melanomas on the trunk (a site likely to be covered at work); 24% in exposed cases versus 4% in unexposed cases. [The Working Group noted that crude estimates of sun exposure were used.]

Rigel et al. (1983) conducted a case-control study in New York, USA, described on p. 106. Cases had had shorter average daily exposure to fluorescent lights (4.9 h) than had

1 After the meeting, the Secretariat became aware of a study by Walker et al. (1992) on the risk of cutaneous malignant melanoma associated with exposure to fluorescent light.
controls (5.4 h). Among office workers, average daily exposures were similar for cases and controls. The crude odds ratio for any exposure was 0.7 among all subjects and 0.6 among office workers.

English et al. (1985) conducted a study in 1980–81 of the exposure to fluorescent light of 337 cases and 349 age-matched controls who had already participated in a population-based case–control study in Western Australia (see Holman and Armstrong (1984a), p. 100). The response rate was 68% for cases and 91% for controls. Detailed information was obtained from telephone interviews about lifetime hours of residential and occupational exposure, the distance to the nearest light fixture and the presence of diffusers. Neither the duration of occupational exposure, the rate of total exposure (hours/year) nor cumulative total exposure was associated with risk for melanoma. Analyses by body site showed no consistent association with exposure to lights without diffusers. Adjustment for measures of total and intermittent exposure to the sun did not alter the results. Subjects were also asked about exposure to plan printers, laboratory equipment emitting UVR, insect tubes, black lights and photocopiers. No association was seen with any of these sources, although the number of exposed subjects was small. The odds ratio for any use of sunlamps was 1.1 (95% CI, 0.6–1.8), although few subjects had used sunlamps (Holman et al., 1986b).

Sorahan and Grimley (1985) examined fluorescent light exposure in 1980–82 in a case–control study in the United Kingdom, described in detail on p. 103. Information on exposure was confined to whether lights were ‘mainly on’ or ‘sometimes on’ at work. After adjustment for age and sex, no consistent association was seen for duration of exposure when cases were compared with electoral register controls.

Dubin et al. (1986) examined fluorescent light exposure in a subset of subjects in a case–control study in New York, USA, described on p. 108. Subjects were interviewed and/or sent postal questionnaires. In data obtained from interview, but not in data obtained from postal questionnaires, the odds ratios increased with average daily exposure in the five years before interview, after adjustment for age and sex (p value for linear trend, < 0.05). A similar pattern was seen for exposure 6–11 years and 11–20 years previously.

Elwood et al. (1986) examined fluorescent light exposure in their case–control study in the United Kingdom in 1981–84, described in detail on p. 103. Subjects were interviewed and later sent postal questionnaires to validate the responses. From the interview data, exposure to undiffused lights at work was associated with an odds ratio of 4.0 (95% CI, 0.8–19.2) for those maximally exposed (p value for trend = 0.2). Control for constitutional factors did not change the results. From the questionnaire data, the odds ratio for maximal exposure (undiffused lights) was 1.9 (95% CI, 0.4–8.4). No association was seen with exposure at home, and no association was seen for use of sunlamps. Subjects were also asked about exposure to particular or unusual light sources, such as vacuum or discharge lamps, insecticidal or germicidal lamps or welding equipment. The odds ratio for exposure to any such source was 2.2 (95% CI, 1.0–4.9). [The Working Group noted that the use of open-ended questions about lighting sources may have introduced recall bias.]

In the Western Canada case–control study in 1979–81 (see Elwood et al., 1984, 1985a,b, p. 107), no association was seen with use of sunlamps (χ² = 6.1, 5 df) (Gallagher et al., 1986).
Østerlind et al. (1988b) examined exposure to fluorescent lighting at work and use of sunlamps and sunbeds in their case–control study in Denmark in 1982–85, described on pp. 103–104. The same proportions of cases and controls reported having been exposed to fluorescent lights at work, and no association was seen with age at first exposure, duration of exposure or type of work place. Past use of sunlamps was also not associated with melanoma, and a smaller proportion of cases than controls had ever used sunbeds (odds ratio, 0.7; 95% CI, 0.5–1.0).

In a case–control study in Scotland (Swerdlow et al., 1988), 180 cases aged 15–84 from three clinics during 1979–84 were compared with 197 age- and hospital-matched patients with various non-malignant diseases. Subjects were interviewed about exposure to fluorescent lights and UV lamps, use of sunbeds, sun exposure and constitutional factors. Controls with skin conditions were excluded from the analysis of UV lamps and sunbeds. No consistent association was seen with exposure to fluorescent lights at home or at work, with or without adjustment for constitutional factors and sun exposure. Significant, positive associations were seen for duration of use of UV lamps and sunbeds (p value for trend, < 0.05). The odds ratio for use for more than one year was 3.4 (95% CI, 0.6–20.3) after adjustment for constitutional factors and sun exposure. Amount of use within five years (1.9; 0.6–5.6) of the interview and more than five years (9.1; 2.0–40.6) before the interview were both positively associated with the risk for melanoma.

MacKie et al. (1989) examined use of sunbeds and sunlamps in their case–control study in Scotland described on p. 106. Use was associated with melanoma in men (odds ratio, 2.6; 95% CI, 0.9–7.3) but showed little association in women (1.5; 0.8–2.9). The effect on men largely disappeared after adjustment for sun exposure and constitutional factors.

In the study of Zanetti et al. (1988) from Turin, Italy, described in detail on p. 104, an odds ratio of 0.9 (0.4–2.0) was found for use of UVA lamps, although few subjects reported exposure.

A large population-based case–control study on occupational exposures was conducted during 1979–85 in Montréal, Canada (Siemiatycki, 1991). Overall, there were 3730 male cases of cancer aged 35–70, including 124 cutaneous melanoma cases; the participation rate was 82%. Each cancer site was compared with the other cancer sites. Exposure to 293 agents, including arc welding fumes and UVR, was assessed by a team of chemists and industrial hygienists on the basis of each individual’s occupational history. Neither arc welding fumes nor exposures to UVR was associated with the risk for cutaneous melanoma (odds ratios, 0.5; 90% CI, 0.3–1.1 and 0.3; 0.1–1.5, respectively).

In a population-based study in southern Ontario, Canada (Walter et al., 1990), 583 cases identified from pathology laboratories and from the cancer registry between 1984 and 1986 were compared with 608 controls randomly sampled from property tax rolls. Participation rates were 90% for cases and 80% for controls. Odds ratios for any use of sunbeds or sunlamps were 1.9 (95% CI, 1.2–3.0) in men and 1.5 (0.99–2.1) in women. Adjustment for constitutional factors did not affect the results. The odds ratios increased with duration of use; for more than 12 months’ use, the odds ratios were 2.1 (0.9–5.3) in men and 3.0 (1.1–9.6) in women.
Table 26. Case–control studies of melanoma of the skin and exposure to fluorescent lights

<table>
<thead>
<tr>
<th>Country</th>
<th>Cases/controls</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>Definition of exposure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>274/549</td>
<td>2.6<sup>a,b</sup></td>
<td>1.2–5.9</td>
<td>Indoor workers, ≥ 20 years' occupational exposure</td>
<td>Beral et al. (1982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3<sup>a,b</sup></td>
<td>NR</td>
<td>Office workers, ≥ 20 years' occupational exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>NS</td>
<td>Any exposure</td>
<td>Rigel et al. (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>NS</td>
<td>Any exposure, office workers</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>337/349</td>
<td>1.2<sup>a,b</sup></td>
<td>0.8–1.9</td>
<td>≥ 35 000 h exposure</td>
<td>English et al. (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2<sup>a,b</sup></td>
<td>0.7–1.9</td>
<td>≥ 1600 h per year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3<sup>a,b</sup></td>
<td>0.8–1.9</td>
<td>≥ 22 500 h undiffused lights</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2<sup>a,b</sup></td>
<td>0.8–1.9</td>
<td>≥ 1300 h per year undiffused lights</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2<sup>a,b</sup></td>
<td>0.6–2.6</td>
<td>≥ 22 500 h head, neck, upper limbs, undiffused lights</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>58/333</td>
<td>0.6<sup>a</sup></td>
<td>NR</td>
<td>≥ 20 years, occupational exposure (mainly on)</td>
<td>Sorahan & Grimley (1985)</td>
</tr>
<tr>
<td>USA</td>
<td>1103/585</td>
<td>2.3<sup>a</sup></td>
<td>1.0–5.8</td>
<td>≥ 9 h per day, 0–5 years previously (interview)</td>
<td>Dubin et al. (1986)</td>
</tr>
<tr>
<td></td>
<td>508/222</td>
<td>0.6<sup>a</sup></td>
<td>0.3–1.3</td>
<td>≥ 9 h per day, 0–5 years previously (postal questionnaire)</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>83/83</td>
<td>1.4<sup>a,b</sup></td>
<td>0.4–5.1</td>
<td>≥ 50 000 h occupational exposure (total fluorescent light, interview)</td>
<td>Elwood et al. (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0<sup>a,b</sup></td>
<td>0.8–19.2</td>
<td>≥ 50 000 h occupational exposure (undiffused lights, interview)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67/66</td>
<td>1.2<sup>a,b</sup></td>
<td>0.3–5.7</td>
<td>≥ 50 000 h occupational exposure (total fluorescent light, postal questionnaire)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.9<sup>a,b</sup></td>
<td>0.4–8.4</td>
<td>≥ 50 000 h occupational exposure (undiffused lights, postal questionnaire)</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>474/926</td>
<td>No association</td>
<td></td>
<td>Duration of exposure, age at first exposure, type of workplace</td>
<td>Østerlind et al. (1988b)</td>
</tr>
<tr>
<td>Scotland,</td>
<td>180/197</td>
<td>1.2<sup>b</sup></td>
<td>0.7–1.9</td>
<td>Any occupational exposure < 5 years previously</td>
<td>Swerdlow et al. (1988)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td>0.8<sup>b</sup></td>
<td>0.4–1.4</td>
<td>Any exposure at home < 5 years previously</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6<sup>b</sup></td>
<td>0.9–2.6</td>
<td>≥ 5 h per day < 5 years previously at work and at home</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4<sup>b</sup></td>
<td>0.9–2.3</td>
<td>Any occupational exposure > 5 years previously</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8<sup>b</sup></td>
<td>0.4–1.4</td>
<td>Any residential exposure > 5 years previously</td>
<td></td>
</tr>
</tbody>
</table>

NR, not reported; NS, not significant
^aOdds ratio for category with highest level of exposure
^bAdjusted for sun exposure
2.2.3 Malignant melanoma of the eye

In the case–control study carried out in Philadelphia, USA, which is described in detail on p. 128, cases of uveal melanoma were more likely to report use of sunlamps than controls. After adjustment for age, eye colour and a history of cataracts, there was a trend to increasing risk with frequency of use (odds ratio for frequent versus never, 2.1; 95% CI, 0.3–17.9; test for linear trend over four levels: \(p = 0.10 \)). The odds ratios for those who had ever worked as welders was 10.9 (2.1–56.5) (Tucker et al., 1985b).

In the case–control study from San Francisco, USA, described on pp. 128–129, exposure to artificial UV light or ‘black light’ [details not given] conferred over three-fold risks for intra-ocular melanoma after adjustment for other significant factors (odds ratio, 3.7; 95% CI, 1.6–8.7). The odds ratios were 2.9 for 1–5 years of exposure and 3.8 for 6 or more years (Holly et al., 1990).

In the case–control study from Boston, USA (Seddon et al., 1990), described on p. 129, exposure to fluorescent lighting was associated with an elevated risk of uveal melanoma (odds ratio, 1.7; 95% CI, 1.1–2.5 for 40 h or more per week as compared to no exposure) in the larger data set, based on case–sibling comparison. In the population-based comparison, the corresponding odds ratio was 1.2 (95% CI, 0.6–2.1). A history of working with welding arcs was reported with similar frequency among cases and controls in both comparisons. Cases reported more frequent use of sunlamps in comparison with both sets of controls. After adjustment for constitutional factors and exposure to the sun, the odds ratios for frequent/occasional use versus never were 3.4 (1.1–10.3) in the population comparison and 2.3 (1.2–4.3) in the sibling comparison.

In the large Canadian study on occupational exposure, described on p. 132, 23 cases of ocular melanoma were included. Analysis only of French Canadians revealed four cases of eye melanoma with exposure to arc welding fumes (odds ratio, 8.3; 90% CI, 2.5–27.10) (Siemiatycki, 1991). No increase was found for substantial exposure; no increase in risk was reported for exposure to UVR.

2.3 Premalignant conditions

2.3.1 Basal-cell naevus syndrome

Basal-cell naevus syndrome is a hereditary condition (Gorlin, 1987) in which affected family members may show, among other major manifestations, an apparent excess of basal-cell carcinomas. These seem to occur more commonly in sun-exposed parts of the body or in unusual patterns. There is no other evidence that solar radiation plays a role in their development.

2.3.2 Dysplastic naevus syndrome

Dysplastic naevus syndrome is a hereditary condition in which affected family members have multiple dysplastic naevi and a greatly increased risk of malignant melanoma (Green et al., 1985b). The distribution of tumours conforms to the usual distribution, and there is anecdotal evidence that solar radiation plays a role in their development (Kraemer & Greene, 1985).
2.4 Molecular genetics of human skin cancers

Analysis of mutations in DNA isolated from tumours and believed to be relevant to carcinogenesis can potentially help in making a causal link with exposures to carcinogens. Two important qualifications must, however, be borne in mind. Firstly, the changes detected may have arisen late in tumour development (whether or not the tumour is the result of exposure to UVR) and may not be involved in initiation or other early steps. Secondly, the spectrum of mutations that is seen may be constrained to those changes that can lead to a functional gene product. This qualification applies, for example, to mutations that activate ras genes but to only a lesser extent to tumour suppressor gene mutations in which inactivation of gene function is involved.

Experimental studies indicate that UV-induced mutations have a distinctive pattern of base-substitution mutations (see section 4.5):
- Virtually all mutations occur at dipyrimidine sites, especially 5′TC and 5′CC sequences.
- The majority of the base substitution mutations involve cytosine with the C→T transition predominating.
- Tandem 5′CC→5′TT mutations occur.

2.4.1 ras Gene mutations

Primary melanomas, metastases and cell lines derived from melanomas which developed at body sites characterized as exposed ‘rarely’, ‘intermittently’ or ‘continuously’ to the sun were analysed for the presence of N-ras mutations. Of 37 cutaneous melanomas, seven had N-ras mutations; all were from ‘continuously’ exposed sites. All mutations in the N-ras gene were at TT or CC sites, which are potential locations for mutagenic UV photoproducts, suggesting a role of sun exposure in N-ras mutation (van’t Veer et al., 1989).

In several investigations, base-substitution mutations were found in Ha-, Ki- and N-ras genes in human skin melanomas (Table 27) and in squamous-cell and basal-cell carcinomas (Table 28) from xeroderma pigmentosum and normal patients. In single studies, Ha- and N-ras gene amplification was found in squamous-cell carcinomas of the skin (Ananthaswamy & Pierceall, 1990), and loss of the Ha-ras allele was seen in basal-cell and squamous-cell carcinomas (Ananthaswamy et al., 1988). Whether exposure to the sun was involved in tumour induction in these studies is, however, less clear.

2.4.2 p53 Gene mutations

Brash et al. (1991) found p53 mutations at various codons in 14 out of 24 (58%) invasive squamous-cell carcinomas from sun-exposed skin (Table 29). The mutations found were predominantly C→T (5 of 14 total mutants, 36%) and CC→TT (3 of 14, 21%) transitions, exclusively at tandem pyrimidine stretches. This finding is consistent with the hypothesis that these mutations are induced by UV irradiation. CC→TT double-base changes in the p53 gene have not yet been found in tumours in any internal organ. These results strongly suggest that solar radiation plays a role in the induction of p53 gene mutations.

Pierceall et al. (1991) found p53 mutations in exon 7 in 2 out of 10 squamous-cell carcinomas from sun-exposed body sites; one was a C→T transition and the other a C→A transversion.
Table 27. ras Gene mutations detected in human naevi and primary and secondary melanomas that developed at sites subject to sun exposure

<table>
<thead>
<tr>
<th>Oncogene codon</th>
<th>Base change</th>
<th>Base-substitution mutation</th>
<th>Site of original tumour</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-ras-61</td>
<td>GGA</td>
<td>C to A</td>
<td>Neck</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>C to A</td>
<td>Lower leg</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>C to A</td>
<td>Nose</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>AAA</td>
<td>C to A</td>
<td>Cheek</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>CGA</td>
<td>[T to C]</td>
<td>Lower leg</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>CAT</td>
<td>[T to A/G]</td>
<td>Xeroderma pigmentosum patient(^a)</td>
<td>Keijzer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>CAT</td>
<td>[T to A]</td>
<td>Site unspecified, probably metastasis</td>
<td>Sekiya et al. (1984)</td>
</tr>
<tr>
<td>N-ras-13</td>
<td>GGT</td>
<td>[C to T]</td>
<td>Finger</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>GGT</td>
<td>[C to T]</td>
<td>Finger</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>GTT</td>
<td>[C to T]</td>
<td>Lower leg</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td>N-ras-12</td>
<td>GAT</td>
<td>[C to T]</td>
<td>Leg</td>
<td>van't Veer et al. (1989)</td>
</tr>
<tr>
<td>Ki-ras-61</td>
<td>GGA</td>
<td>C to A</td>
<td>Lower leg</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td>Ki-ras-12</td>
<td>GCT</td>
<td>[C to A]</td>
<td>Abdomen</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td>[C to A]</td>
<td>Knee</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td>[C to A]</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td>[C to A]</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td>[C to A]</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td>[C to A]</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>[C to T]</td>
<td>Buttock</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>[C to T]</td>
<td>Forearm (naevus)</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>[C to T]</td>
<td>Abdomen (naevus)</td>
<td>Site unspecified, probably metastasis</td>
<td>Shukla et al. (1989)</td>
</tr>
<tr>
<td>Ha-ras-12</td>
<td>GCC</td>
<td>[C to A]</td>
<td>Abdomen</td>
<td>Shukla et al. (1989)</td>
</tr>
</tbody>
</table>

Italicics indicate potential pyrimidine dimer site including neighbouring codon; [], base changes occurring in anti-sense strand

\(^a\)Malignant melanoma probably resulting from metastasis of a primary skin tumour
Table 28. ras Gene mutations detected in human keratoacanthomas (KA), basal-cell carcinomas (BCC) and squamous-cell carcinomas (SCC) that developed at sites subject to sun exposure

<table>
<thead>
<tr>
<th>Oncogene codon</th>
<th>Base change</th>
<th>Base-substitution mutation</th>
<th>Tumour</th>
<th>Site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-ras 12</td>
<td>GCT GGT GGC</td>
<td>[C to A]</td>
<td>SCC</td>
<td>Lip</td>
<td>van der Schroeff et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>TGT</td>
<td></td>
<td>BCC</td>
<td>Shoulder</td>
<td>van der Schroeff et al. (1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BCC</td>
<td>Neck</td>
<td>van der Schroeff et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>GAT</td>
<td>[C to T]</td>
<td>BCC</td>
<td>Face</td>
<td>van der Schroeff et al. (1990)</td>
</tr>
<tr>
<td>Ha-ras 61</td>
<td>GGC CAG GAG</td>
<td>[T to A]</td>
<td>SCC</td>
<td>Not specified</td>
<td>Corominas et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>CAT</td>
<td>[C to A]</td>
<td>BCC</td>
<td>Face</td>
<td>van der Schroeff et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>AAG</td>
<td>C to A</td>
<td>KA</td>
<td>Not specified</td>
<td>Corominas et al. (1989)</td>
</tr>
<tr>
<td>Ha-ras 12</td>
<td>GCC GGC GGT</td>
<td>[C to T]</td>
<td>SCC</td>
<td>Not specified</td>
<td>Corominas et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>AGC</td>
<td>[C to T]</td>
<td>KA</td>
<td>Not specified</td>
<td>Corominas et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>AGC</td>
<td>[C to T]</td>
<td>KA</td>
<td>Not specified</td>
<td>Corominas et al. (1989)</td>
</tr>
</tbody>
</table>

Italics indicate potential pyrimidine dimer site including neighbouring codon; [], base changes occurring in anti-sense strand
Table 29. p53 Tumour suppressor gene mutations in human squamous-cell carcinomas that developed at sites subject to sun exposure

<table>
<thead>
<tr>
<th>Codon</th>
<th>Nucleotide sequence</th>
<th>Base-substitution mutation</th>
<th>Incidence<sup>a</sup></th>
<th>Site of tumour origin</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>TCT</td>
<td>TGT; C→G</td>
<td>1/14/24</td>
<td>Preauricular</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>56</td>
<td>T TCA</td>
<td>TAA; C→A</td>
<td>1/14/24</td>
<td>Chest</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>104/105</td>
<td>CG CCT</td>
<td>deletion of a C</td>
<td>2/14/24</td>
<td>Preauricular/temple</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>151</td>
<td>CCC CCC</td>
<td>CAC; C→A</td>
<td>1/14/24</td>
<td>Scalp</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>152</td>
<td>CC CCC</td>
<td>CAC; C→T</td>
<td>1/14/24</td>
<td>Hand</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>179</td>
<td>A CCA</td>
<td>CAA; C→A</td>
<td>1/14/24</td>
<td>Scalp</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>244</td>
<td>CCG G</td>
<td>TCG; C→T</td>
<td>1/2/10</td>
<td>Face</td>
<td>Pierceall et al. (1991)</td>
</tr>
<tr>
<td>245</td>
<td>G CCG</td>
<td>CAG; C→A</td>
<td>1/14/24</td>
<td>Cheek</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>247/248</td>
<td>AC CG</td>
<td>T T; CC→TT</td>
<td>1/14/24</td>
<td>Nose</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>248</td>
<td>GCC</td>
<td>GAC; C→A</td>
<td>1/2/10</td>
<td>Face</td>
<td>Pierceall et al. (1991)</td>
</tr>
<tr>
<td>258</td>
<td>T TCC</td>
<td>TTC; C→T</td>
<td>1/14/24</td>
<td>Face</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>285/286</td>
<td>TC CT</td>
<td>T T; CC→TT</td>
<td>1/14/24</td>
<td>Cheek</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>286</td>
<td>TC CT</td>
<td>CTT; C→T</td>
<td>1/14/24</td>
<td>Face</td>
<td>Brash et al. (1991)</td>
</tr>
<tr>
<td>317</td>
<td>CC CCA</td>
<td>TCA; C→T</td>
<td>1/14/24</td>
<td>Postauricular</td>
<td>Brash et al. (1991)</td>
</tr>
</tbody>
</table>

^aItalics indicate potential pyrimidine dimer site

^bNo. of specific mutations/no. of total mutations found/Total number of samples tested only from sites continuously exposed to the sun
3. Studies of Cancer in Animals

3.1 Experimental conventions

3.1.1 Species studied

The experimental induction of skin cancers in mice following exposure to a mercury-arc lamp was first reported by Findlay (1928). Initially, haired albino mice were used, but hairless and nude mice are now preferred.

An important development was the use of the hairless mouse as a model (Winkelmann et al., 1960, 1963). In haired animals, the fur provides effective protection of the skin against UVR. This limits investigations to sparsely haired skin regions, mainly the ears, as, in long-term experiments with frequent exposures, the mechanical trauma caused by shaving might influence the process of tumorigenesis. The skin of hairless mice differs, however, from human skin in many respects. It is, for instance, much thinner and has abnormal hair follicles. The hairless mouse does, however, have a thymus and a functioning immune system, in contrast to the nude mouse (Eaton et al., 1978; Hoover et al., 1987). Many recent studies on carcinogenesis induced by UVR used the hairless mouse model (Forbes et al., 1981; de Gruijl et al., 1983; Gallagher et al., 1984b). The changing designations of ‘Skh’ mice are listed in Table 30. Skin tumorigenicity has been evaluated experimentally in only a relatively small number of species other than the mouse.

Table 30. Alternative designations used for ‘Skh’ outbred stocks of hairless mice

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>1970–86</th>
<th>After 1986</th>
<th>Synonyms used in the literature</th>
<th>Inbred strains derived from Skh:hr stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albino b</td>
<td>Skh: hairless-1</td>
<td>Skh:hr I</td>
<td>Sk-1; Skh-1; Skh/Hr-1; Skh:HR; HRA/Skh-1; Skh-hr1</td>
<td>HRA/Skh (Temple University, Philadelphia, PA, USA)</td>
</tr>
<tr>
<td>Pigmented c</td>
<td>Skh: hairless-2</td>
<td>Skh:hr II</td>
<td>Sk-2; Skh-2; Skh/Hr-2</td>
<td>HRA/Skh-1 (University of Sydney, Sydney, Australia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenotype (any colour)</th>
<th>1970–86</th>
<th>After 1986</th>
<th>Synonyms used in the literature</th>
<th>Inbred strains derived from Skh:hr stock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a From Forbes et al. (1990)
bForbes et al. (1981); de Gruijl et al. (1983)
cDavies & Forbes (1988)

3.1.2 Wavelength ranges

As noted in section 1.1, for the purposes of this monograph, the UV wavelength range is subdivided according to the convention of the Commission Internationale de l'Eclairage (1987) into: UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm). The UVB
range is generally found to be most effective in inducing skin cancer, i.e., tumorigenesis may be achieved with smaller doses of radiant exposure than with UVA and UVC. A complete discussion of wavelength ranges is given in section 1.1.

3.1.3 Measured doses

Many investigators of the carcinogenicity of UVR have reported the type of lamps they used, which are frequently broad-spectrum lamps, sometimes in combination with filters. When estimates of the doses of UVR administered are given, the measuring instrument is usually mentioned and the result is given in terms of irradiance or dose, with no further detail. Such information is of some value, especially for comparing the results of experiments in which the same type of lamps were used.

The action spectrum (see section 1) given in Figure 10 shows that the carcinogenic effectiveness of UVR in hairless mice changes steeply, even by orders of magnitude, over a wavelength range of 10 or 20 nm. This pattern indicates that irradiance must be spectrally specified in order to be meaningful, and not integrated into one value over a broad spectrum. One approach is to give irradiance weighted according to the action spectrum for UV carcinogenesis, but this is available only in provisional form (see Fig. 10 and discussion on pp. 46–47). Another approach is to provide data on erythemally weighted irradiance, since the action spectrum for erythema corresponds approximately to that for carcinogenesis (Forbes et al., 1978). A simple, direct way of calculating this is to relate the doses administered to the minimal erythema dose or to the minimal oedemic dose for the animal being investigated. When investigators supplied such measures of effect, they are mentioned in the summaries below.

In experimental situations, there is never a perfectly sharp cut-off of wavelengths. The expression ‘mainly UV A’ is of questionable value, because even if UVB represents only 0.1% of the emission spectrum, it may still dominate the effect (see pp. 144–147, 151 and Fig. 10). Terms such as ‘mainly UVB’ are used below only when there are good reasons to assume that the effects considered are due mainly to UVB radiation.

3.1.4 Protocols

Experimental investigations on the carcinogenicity of UVR, conducted mostly on mice, have been reviewed (Blum, 1959; Urbach et al., 1974; Kripke & Sass, 1978; WHO, 1979; van der Leun, 1984; Epstein, 1985).

Hundreds of studies have been reported. Most were not designed to test whether or not the radiation used was carcinogenic per se but to investigate the process of UV carcinogenesis. The methods used in these studies differ in many respects from those in standard lifetime studies to evaluate the carcinogenicity of chemicals. For example, many studies do not give complete details of the UVR emission spectrum used or exposure dose, do not enumerate all tumours, do not provide data on survival or do not provide histological details of tumours. Control groups are not always included; however, spontaneous skin tumours are rare in mice and rats. In many of the studies presented in detail below, appropriate statistical analyses have been done demonstrating clear dose-related trends in numbers of tumour-bearing animals, number of tumours per animal and/or median time to first tumour.
Fig. 10. Sterenborg-Slaper action spectrum for ultraviolet-induced skin carcinogenesis (1.0-mm tumours) in albino hairless mice. Effectiveness is defined as the reciprocal of the daily dose at each wavelength that leads to tumours of 1-mm diameter in 50% of animals in 265 days, relative to the corresponding value at the wavelength of maximal effectiveness. The effectiveness between 340 and 400 nm represents an average value for that wavelength range.

From van der Leun (1987a)

3.2 Broad-spectrum radiation

3.2.1 Sunlight

In one study by Roffo (1934), 600 rats [sex and strain unspecified] were exposed to solar radiation (sunlight) at a latitude of 35 °S in Buenos Aires, Argentina. The average exposure was for 5 h per day, with avoidance of the hours around solar noon in the summer. In the first days, 365 rats died from sunstroke. Of the 235 remaining animals, 165 (70%) developed tumours. There were 140 tumours of the ear (58% squamous-cell carcinomas; 36% spindle-cell sarcomas; 6% carcinosarcomas); 58 eye tumours (tumours of the conjunctiva, 100% spindle-cell sarcomas; tumours of the eyelid, 50% squamous-cell carcinomas and 50% spindle-cell sarcomas); and 15 other tumours, mainly squamous-cell carcinomas, at sites including the nose, tail, paw and neck. In complementary experiments reported in the same paper, groups of animals were exposed either to sunlight filtered through various colours of glass, to radiation from various types of lamp (quartz mercury, glass mercury, neon gas and
filament lamps) or to short Hertzian wavelengths. Tumours [types and sites unspecified] were observed in all 150 animals exposed to quartz mercury lamps; no tumour was induced in any other experimental group. On the basis of this evidence, the author concluded that the carcinogenicity of sunlight could be attributed to UVR.

In another report by Roffo (1939), 2000 white rats and mice [exact numbers unspecified] were exposed to sunlight for an average of 5 h per day. After three to six months, benign neoplasms and, after seven to nine months, malignant neoplasms of the skin of the ear (88% of all malignant tumours), the forepaw (7.25%), the tail (2%) and nose (one tumour) developed in 600 animals; 25% of the tumours were seen on the eyes. The ear tumours were diagnosed as squamous-cell carcinomas (58%), spindle-cell sarcomas (36%) and carcinosarcomas (6%) by detailed histological examination. Similarly, the paw tumours were diagnosed as squamous-cell carcinomas (42%) and spindle-cell sarcomas (58%); the tumours of the tail were all squamous-cell carcinomas. The distribution of tumours of the eye was similar to that in the study of Roffo (1934). [The Working Group considered that these are exceptional studies which fully document the carcinogenicity of solar radiation in rats and mice, even though quantitative detail is lacking. The resulting neoplasms are described and photographically illustrated in exact detail. The Working Group accepted the weight of evidence contained in these studies as to the carcinogenicity of solar radiation to rats and mice.]

Domestic and other animals of many species (cows, goats, sheep (reviewed by Emmett, 1973), cats (Dorn et al., 1971) and dogs (Madewell et al., 1981; Nikula et al., 1992)) develop skin tumours, and there are good indications that sunlight is involved. The tumours described generally developed in sparsely haired, light-coloured skin. Cancers of the eye occur in many species, including dogs, horses, cats, sheep and swine, but are particularly frequent in cattle (Russell et al., 1956).

3.2.2 Solar-simulated radiation

In several investigations on carcinogenesis by UVR, 'solar-simulated radiation' was used (Forbes et al., 1982; Staberg et al., 1983a; Young et al., 1990; Menzies et al., 1991). In one large, particularly informative experiment (Forbes et al., 1982), more than 1000 hairless albino Skh-hrl mice were exposed to solar-simulated radiation from a xenon arc lamp, with various filters to make the spectral distribution in the UV region similar to that of sunlight under various thicknesses of the ozone layer. The exposures lasted for up to 80 weeks. More than 90% of the mice developed skin tumours, predominantly squamous-cell carcinomas. The time to development of 50% of first tumours was shorter after exposure to the spectra that included higher irradiance in the wavelength range 290-300 nm. The other experiments mentioned were more limited and dealt with more specialized aspects of UV carcinogenesis.

3.2.3 Sources emitting UVC, UVB and UVA radiation

Sources emitting radiation in the entire UV wavelength range were used in experiments on UV carcinogenesis mainly between 1930 and 1960.

(a) Mouse

Grady et al. (1943) exposed 605 strain A mice to broad-spectrum UVR at a wide range of doses and irradiances (weekly doses, $3.6-43 \times 10^7$ ergs/cm2 [40-430 kJ/m2]; Blum &
Lippincott, 1942). The investigation dealt primarily with skin tumours (mainly spindle-cell sarcomas). About 5% of the mice developed tumours of the eye. Histological examination by Lippincott and Blum (1943) showed that the eye tumours arose mostly in the cornea and were spindle-cell sarcomas or fibrosarcomas; haemangioendotheliomas were also found.

A particularly large, informative series of investigations was carried out with unfiltered medium-pressure mercury arc lamps which emitted UVC, UVB and UVA (Blum, 1959). More than 600 strain A mice were irradiated (daily dose, \(0.32-8.6 \times 10^7\) ergs/cm\(^2\) [3-86 kJ/m\(^2\)]) in a series of investigations dealing with various aspects of UV carcinogenesis; the dose–effect relationship was addressed particularly. In most of the experiments, more than 90% of mice developed skin tumours, mainly of the ears, the only site for which quantitative data were given.

(b) Rat

Findlay (1930) exposed six epilated albino rats to broad-spectrum UVR from a mercury-vapour lamp at a distance of 18 in [46 cm] for 1 min three times a week. Rapidly growing papillomas were reported in one rat. The time required was, however, much longer than in mice exposed similarly, namely, 21 months as compared to eight months for mice.

Putschar and Holtz (1930) exposed 35 rats [strain unspecified] with very low spontaneous tumour incidence to almost continuous irradiation with broad-spectrum UVR from a quartz mercury lamp for 11 months. They reported regular occurrence of skin tumours, including papillomas, squamous-cell carcinomas and, occasionally, basal-cell carcinomas. The tumours were first seen after 27 weeks of exposure.

Huldschinsky (1933) exposed seven white rats to UVR from a solar lamp for 2 h per day, six days per week for one year or more. Another group of five rats was exposed to a quartz lamp emitting a predominantly UVC waveband (< 270 nm). The doses given per session were about 10 times higher than those used in phototherapy. Spindle-cell sarcomas of the eye were found in 2/7 and 5/5 rats in each group, respectively.

Hueper (1942) reported squamous-cell carcinomas and, rarely, spindle-cell carcinomas and sarcomas, round-cell carcinomas and basal-cell carcinomas of the skin in 20 rats [strain unspecified] exposed for up to 10 months to broad-spectrum UVR from a mercury vapour burner (a Hanovia Super S Alpine lamp) at a distance of 75 cm.

In a study by Freeman and Knox (1964), a group of 78 rats (66 pigmented and 12 unpigmented) was exposed to broad-spectrum UVR from mercury lamps at 50 cm from the skin on five days a week for one year; the doses per session corresponded to approximately 1 MED for rat skin. A total of 98 eye tumours developed, with more tumours in pigmented rats. The tumours arose in the corneal stroma; two-thirds were diagnosed as fibrosarcomas and one-third as haemangioendotheliomas.

(c) Hamster

Hamsters exposed to an irradiation regimen similar to that described above also developed eye tumours (Freeman & Knox, 1964). In 19 animals (9 pigmented, 10 unpigmented) exposed for one year, haemangioendotheliomas and fibrosarcomas developed in 14 eyes.
(d) Guinea-pig

Guinea-pigs were exposed to the same regimen as described above. None of 17 animals developed a tumour of the eye (Freeman & Knox, 1964).

3.3 Sources emitting mainly UVB radiation

Many experiments have been carried out with sources emitting mainly UVB radiation, in which increases in the number of tumour-bearing animals and/or in the number of tumours per animal were seen (Blum, 1959; Winkelmann et al., 1963; Freeman, 1975; Stenbäck, 1975a; Daynes et al., 1977; Kripke, 1977; Spikes et al., 1977; Forbes et al., 1981; de Gruijl et al., 1983; Gallagher et al., 1984b). The most informative studies are described below.

3.3.1 Mouse

Freeman (1975) studied carcinogenesis induced by chronic exposure to narrow-band UVB produced by a high-intensity diffraction grating monochromator with a half-power band-width of 5 nm. Exposure was three times per week to one ear of each haired albino mouse. Four wavelengths were used, and the doses were determined as the MED. Of a group of 30 mice exposed to 300 nm (weekly dose, 60 mJ/cm²), 16 developed squamous-cell carcinomas of the ear. Of a group of 30 mice exposed to 310 nm (weekly dose, 750 mJ/cm²), 16 survived to 450 days and eight developed five squamous-cell carcinomas, two fibrosarcomas and one angiosarcoma of the ear. No skin tumour was observed among 30 mice irradiated with UVR at 290 nm (weekly dose, 42 mJ/cm²); of five mice irradiated with 320 nm (weekly dose, 4950 mJ/cm²), two developed squamous-cell carcinomas of the ear.

Two fibrosarcomas and one unspecified tumour of the eye were reported in 24 C3H/HeN mice bearing 25 skin tumours (mostly fibrosarcomas) after exposure to UVR (168 J/m² three times a week) from Westinghouse FS40T12 sunlamps (280–340 nm) (Kripke, 1977).

In the experiment of Forbes et al. (1981), groups of 24 male and female hairless albino Skh:HR mice (the changing designations of sources of ‘Skh’ mice are listed in Table 30), six to eight weeks old, were irradiated on five days per week with Westinghouse FS40T12 sunlamps (see Fig. 9c, p. 64), emitting mainly UVB (with < 1% below 280 nm; two-thirds at 280–320 nm and one-third at > 320 nm). All animals had developed tumours by the end of the experiment (up to 45 weeks), and a dose–response effect was demonstrated, as assessed by time to tumours in 50% of animals (Table 31). Histological examination showed tumours of 4 mm or more in diameter to be squamous-cell carcinomas; those of about 1–4 mm formed a continuum from carcinoma in situ to squamous-cell carcinoma, and those less than 1 mm comprised epidermal hyperplasia and squamous metaplasia tending toward carcinoma in situ. Less than 1% of tumours were fibrosarcomas.

Six groups of 22–44 male and female Skh-hr 1 hairless albino mice (total, 199), six to eight weeks of age, were exposed to daily doses ranging from 57 to 1900 J/m² of mainly UVB radiation from Westinghouse FS40TL12 sunlamps; this dose range encompassed a factor of 33. Most of the animals developed skin tumours, although even the highest daily dose was sub-erythemic. A clear-cut relationship was shown between daily dose and time required for 50% of animals to develop skin tumours, which were predominantly squamous-cell carcinomas (Fig. 11). Squamous-cell carcinomas developed in 71% of the mice in the lowest
STUDIES OF CANCER IN ANIMALS

Table 31. Dose–response to ultraviolet radiation of hairless Skh:HR mice

<table>
<thead>
<tr>
<th>Daily dose (J/m²)</th>
<th>Time to 50% tumour incidence (weeks)</th>
<th>Terminated at week</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>38.6</td>
<td>45</td>
</tr>
<tr>
<td>587</td>
<td>33.3</td>
<td>45</td>
</tr>
<tr>
<td>822</td>
<td>29.2</td>
<td>45</td>
</tr>
<tr>
<td>1152</td>
<td>20.0</td>
<td>36</td>
</tr>
<tr>
<td>1613</td>
<td>17.6</td>
<td>36</td>
</tr>
<tr>
<td>2259</td>
<td>12.9</td>
<td>25</td>
</tr>
</tbody>
</table>

From Forbes et al. (1981)

Fig. 11. Dose–effect relationship for the induction of < 1-mm skin tumours in hairless mice by exposure to UVB radiation over a wide range of daily doses; t_m, median induction time

From de Gruijl et al. (1983)

dose group, and two skin tumours were reported in a total of 24 nonirradiated control mice (de Gruijl et al., 1983).

In albino hairless Skh:Hr-1 mice irradiated with UVB or UVB plus UVA radiation three times a week for 16 weeks, with a 17-week recovery period, the spectrum for UV tumorigenesis was sharp and had a maximum near 300 nm (Bissett et al., 1989).
3.3.2 Rat

Skin tumour induction was studied in a group of 40 shaven female NMR rats, 8–10 weeks old at the start of the experiment. The animals were irradiated chronically at a distance of 37.5 cm for 60 weeks with Westinghouse FS40T12 sunlamps (Fig. 9c), emitting mainly UVB (weekly dose, 5.4–10.8 × 10^4 J/m^2). A total of 25 skin tumours, most of which were papillomas of the ears, developed in 16/40 animals (Stenbäck, 1975a).

3.3.3 Hamster

Stenbäck (1975a) irradiated 40 shaven female Syrian golden hamsters, 8–10 weeks of age, using the same protocol as described above. A total of 30 skin tumours developed in 14/40 animals; 22 were papillomas (14 animals), four were keratoacanthomas (three animals), one was a squamous-cell carcinoma of the skin and three were papillomas of the ear (one animal).

3.3.4 Guinea-pig

Stenbäck (1975a) exposed guinea-pigs using the same protocol as above and found skin tumours in 2/25 animals (a fibroma and a trichofolliculoma).

3.3.5 Fish

Two hybrid fish strains susceptible to melanocytic neoplasms by UVR were developed by Setlow et al. (1989) by crossing platyfish and swordtails. A group of 460 fish were exposed to mainly UVB radiation from Westinghouse FS40 sunlamps, filtered with acetate sheets transmitting > 290 nm or > 304 nm at various doses (150 and 300 J/m^2 per day for > 290 nm; 850 and 1700 J/m^2 per day for > 304 nm) for 1–20 consecutive days. There were 103 controls. Depending on the wavelength, the level, the number of days of exposure and the strain, 19–40% of the irradiated fish developed melanocytic tumours; 13 and 2% of the controls in the two strains, respectively, developed such tumours.

3.3.6 Opossum

Monodelphis domestica, a South American opossum, is unusual in showing the phenomenon of photoreactivation (see Glossary) of pyrimidine dimers and erythema (Ley, 1985); it also developed actinic keratoses and skin tumours (mainly fibrosarcomas and squamous-cell carcinomas) on exposure to UVR from an FS-40 sunlamp (280–400 nm) (Ley et al., 1987). Animals were shaved regularly and exposed to mainly UVB radiation from Westinghouse FS40 sunlamps, with relative emissions of 0.04, 0.27, 0.69, 1.0 and 0.09 at a dose of 250 J/m^2 (which is approximately half of an average MED; see Fig. 9c) at 280, 290, 300, 313 and 360 nm, respectively. Eight of 13 animals developed localized melanocytic hyperplasia; 100 weeks after the start of the experiment, melanomas were found in 5/13 surviving animals. M. domestica do not develop spontaneous melanomas, as was apparent in a much larger colony not exposed to UVR. Exposure of another group to photoreactivating light after UV irradiation reduced the incidence of melanocytic hyperplasia (3/17); this was considered to be a precursor lesion of the melanomas, although photoreactivation could not be demonstrated in the melanoma (Ley et al., 1989).
[The Working Group noted that the melanocytic lesions induced in fish and the South American opossum differ histologically from human melanoma: they grow to a larger size and do not metastasize readily.]

Ley et al. (1991) exposed groups of *M. domestica* to UVR from fluorescent sunlamps (Westinghouse FS40; 280–400 nm with a peak at 313 nm) three times a week for 70 weeks at a dose of 250 J/m². Besides skin tumours, tumours of the anterior eye were observed beginning 30 weeks after the start of exposure. At 69 weeks, 50% of the animals had eye tumours, which were classified as fibrosarcomas of the corneal stroma. In animals exposed to UVR followed immediately by photoreactivating light, tumours appeared later and in reduced numbers.

‘Cancer eye’ in cattle, which includes squamous-cell carcinoma of the eye and the circumocular skin, is thought to be caused by solar UVR. In an attempt to confirm this relationship experimentally (Kopecky et al., 1979), four Hereford cattle (which lack pigment around the eyes) were exposed to UVB radiation from Westinghouse FS40 lamps. Three cows developed grossly observable tumours of the eye, one of which was histopathologically confirmed as a preneoplastic growth.

3.4 Sources emitting mainly UVC radiation

3.4.1 Mouse

Carcinogenicity studies have been performed mainly in mice, but no study is available in which animals were exposed solely to UVC radiation. Several studies have been reported in which the source of UVC radiation was low-pressure mercury discharge germicidal lamps, which emit 90–95% of their radiation at wavelength 254 nm and weaker spectral lines in the UVB, UVA and visible light regions (Rusch et al., 1941; Blum & Lippincott, 1942; Forbes & Urbach, 1975; Lil, 1983; Joshi et al., 1984; Sterenborg et al., 1988). In all of these investigations, the exposures induced tumours. Two of the most informative studies are described in more detail below.

A group of 40 female C3H/HeNCr1Br mice were irradiated with these lamps at a weekly dose of 3×10^4 J/m². Three animals died without tumours after 9, 43 and 63 weeks of irradiation; all of the other animals had tumours. By 52 weeks, 97% of the animals had developed skin tumours, with a median time to appearance of 43 weeks. The mean number of tumours per tumour-bearing mouse was 2.9. Tumour histology was carried out in 29/37 mice. Of a total of 83 suspected tumours, 66 were squamous-cell carcinomas, 10 were proliferative squamous lesions and 6 were invasive fibrosarcomas; one had the appearance of a cystic dilatation (Lil, 1983). [The Working Group that resulted in *IARC Monographs* volume 40 (IARC, 1986a) noted that the 4% UVB content of the source, representing a weekly dose of 1170 J/m², could not be excluded as contributing to the induction of skin tumours.]

Sterenborg et al. (1988) presented evidence that the tumours they induced in albino hairless mice were indeed due to UVC radiation. Groups of 24 male and female hairless albino mice (Skh-hr1), 6–10 weeks of age, were exposed to UVC radiation from Philips germicidal TUV 40W low-pressure mercury discharge lamps (mainly 254 nm) on seven days a week for 75 min per day at 230, 1460 or 7000 J/m² (30 times the MED); this dose was 60% less during the first seven days of the experiment. A total of 65 squamous-cell carcinomas of
the skin were found [number of animals with tumours not specified]. Both the percentage of
tumour-bearing animals and the number of tumours per mouse were strongly dose-related.
By comparing their results with those of experiments with UVB, the investigators concluded
that (i) the UVB emitted by the low-pressure mercury discharge lamps was insufficient to
account for the induction of tumours at the rate found, as at least 850 days of exposure to the
UVB radiation present would be required to induce skin tumours at the rate observed, as
compared to 161 days with the low-pressure mercury discharge lamp used; (ii) there is a
qualitative difference between the effects of low-pressure mercury discharge and UVB
lamps, in that the tumours induced by the mercury discharge lamps were scattered more
widely over the skin of the mice than in the experiments with UVB; and (iii) the dose–effect
relationship for tumorigenesis was less steep with the mercury discharge lamps than with
UVB sources. [The Working Group noted that the evidence given to exclude UVB as
contribute to the induction of skin tumours does not obviate the possibility that some
interaction between UVC and UVB radiation led to tumour induction.]

3.4.2 Rat

Nine groups of 6 or 12 male CD-1 rats, 28 days of age, were shaved and exposed to
varying doses of UVC from Westinghouse G36T6L sterilamps emitting predominantly 254
nm (dose range, 0.08–26.0 × 10^4 J/m^2). Survival ranged from 75 to 92% for the nine
experimental groups. Keratoacanthoma-like skin tumours developed at a yield that was
approximately proportional to dose throughout the dose range 0.65–26.0 × 10^4 J/m^2,
although no tumour was observed at 0.32 × 10^4 J/m^2 or below (Strickland et al., 1979).

3.5 Sources emitting mainly UVA radiation

The carcinogenic properties of UVA radiation received little attention before the
introduction of UVA equipment for tanning, which led to the development of powerful
sources of UVA. Many experiments have now been performed, using mainly hairless mice, to
examine the possible carcinogenicity of UVA radiation (Zigman et al., 1976; Forbes et al.,
1982; Berger & Kaase, 1983; Staberg et al., 1983a,b; Kaase et al., 1984; Santamaria et al.,
1985; Strickland, 1986; van Weelden et al., 1986; Slaper, 1987; Kligman, 1988 [abstract]; van
Weelden et al., 1988; Kligman et al., 1990 [abstract]; Sterenborg & van der Leun, 1990; van
Weelden et al., 1990a; Kelfkens et al., 1991a; Kligman et al., 1992). Some have shown no
induction of tumours (Staberg et al., 1983a,b; Kaase et al., 1984; Kligman, 1988 [abstract]).
[The Working Group noted that the doses may have been too small (daily doses in the range
of 160 kJ/m^2) (Staberg et al., 1983b) or the exposure period too short (Berger & Kaase, 1983;
Kaase et al., 1984; Kligman, 1988 [abstract]), as noted by the authors in a subsequent report
(Kligman et al., 1992).] In the other experiments, tumours were induced. [The Working
Group noted that in some of the latter experiments either it is unclear whether UVB
radiation was sufficiently excluded from the spectrum (Zigman et al., 1976; Berger & Kaase,
1983; Staberg et al., 1983a; Santamaria et al., 1985) or the exclusion of UVB radiation was not
fully convincing (Strickland, 1986).]

Studies in which the exclusion of UVB radiation was documented to be sufficient and
which led to the induction of tumours by UVA in hairless mice were reported by van Weelden
et al. (1986, 1988, 1990a), Slaper (1987), Kligman et al. (1990 [abstract], 1992), Sterenborg
STUDIES OF CANCER IN ANIMALS

and van der Leun (1990) and Kelfkens et al. (1991a). A few of the most informative studies are described below.

Groups of 24 male and female albino hairless Skh-hr 1 mice were exposed to UVA radiation from a bank of Philips TL40W/09 fluorescent tubes, filtered through a 10-mm glass plate selected for strong absorption of UVB radiation, for 12 h a day on seven days a week for about one year, at which time the experiment was terminated. The daily dose was 220 kJ/m². Most animals developed scratching lesions before they contracted skin tumours, which occurred in all animals; the median time to tumour appearance was 265 days. At the end of the experiment, the larger lesions were examined histologically: 60% were classified as squamous-cell carcinomas, 20% as benign tumours, including papillomas and keratoacanthoma-like lesions, and 20% as mild cellular and nuclear atypia. The histological findings were similar to those observed in a parallel experiment with UVB, but the tumours in the UVA-exposed group appeared over a longer time span. Residual UVB radiation was excluded as the cause of tumours in UVA-exposed mice on quantitative considerations: the authors concluded that more than 100 000 times the UVB present would have been required in order to induce tumorigenesis at the rate observed (van Weelden et al., 1986, 1988).

Groups of 48 male and female hairless albino Skh-hr 1 mice were exposed to 220 kJ/m² UVA radiation (> 340 nm) from four high-pressure mercury metal-iodine lamps (Philips HPA 400 W), passed through liquid filters, for 2 h per day on seven days per week for up to 400 days. The spectrum matched that of a lamp used for tanning (the UVASUN 5000); UVB was effectively excluded by the filters. Skin tumours developed in most of the animals, and 31 developed tumours before any scratching was observed. The largest tumours were examined histologically at the end of the experiment: 15/20 tumours examined were squamous-cell carcinomas (Sterenborg & van der Leun, 1990).

The desire to tan safely has raised interest in the possible carcinogenicity of long-wavelength UVA (340–400 nm). In some experiments, UVB was excluded so rigorously that there was also very little UVA in the range 315–340 nm; exposure was therefore mainly to wavelengths in the region of 340–400 nm (van Weelden et al., 1988; Sterenborg & van der Leun, 1990; van Weelden et al., 1990a). These experiments yielded squamous-cell carcinomas in most animals. [The Working Group noted that if these were to be ascribed to the small proportion of shorter-wavelength UVA present in the spectra, a sharp peak in the action spectrum for UV carcinogenesis would have to occur between 330 and 340 nm, which does not appear likely.] In experiments by Kligman et al. (1990 [abstract], 1992), wavelengths shorter than 340 nm were filtered out rigorously. Female hairless albino Skh-hr 1 mice were exposed several times per week for 60 weeks to UVA at wavelengths of 340–400 nm at daily doses of 360 and 600 kJ/m², as used in artificial suntanning. Eighteen weeks later, 44 surviving mice had 19 skin tumours, mostly papillomas. At week 100, 22 surviving mice had 40 tumours, many of which were considered clinically to be squamous-cell carcinomas. At week 100, 22 surviving mice had 40 tumours, many of which were considered clinically to be squamous-cell carcinomas.

The carcinogenicity of short-wavelength UVA (315–340 nm) was investigated in one experiment. Groups of 24 male and female albino hairless Skh-hr 1 mice were exposed to average daily doses of 20 or 56 kJ/m² radiation from specially developed fluorescent tubes with peak emission near 330 nm (UVB radiation was filtered out efficiently using a glass filter) on seven days a week for 650 days. All mice in the high-dose group developed multiple tumours, first mainly papillomas and later predominantly squamous-cell carcinomas. In the
lower-dose group, three mice developed skin tumours, all of which were papillomas. The lamps also emitted long-wavelength UVA (340–400 nm), but in a proportion considered by the authors to be too small to account for the rate of tumorigenesis observed (Kelfkens et al., 1991a). The investigators estimated the carcinogenic effectiveness of short-wavelength UVA (315–340 nm) to be approximately five times greater than that of long-wavelength UVA (340–400 nm).

3.6 Interaction of wavelengths

In daily life, the skin is exposed frequently to several wavelength ranges (UVA, UVB, UVC) simultaneously, or to different combinations at different times. The simplest explanation of an effect of such combined exposures is ‘photoaddition’, i.e., each exposure contributes to the effective dose in an additive way. The validity of this hypothesis is one of the assumptions underlying widely used concepts such as ‘erythemal effective energy’ and the derivation of the action spectrum shown in Figure 10 (p. 141). It implies that any additional exposure to an effective dose, in any wavelength region, increases the carcinogenic effect.

Several studies provide indications, however, that the situation is more complicated. Interactions are seen between the effects of different wavebands that result in deviations from photoaddition (for reviews, see van der Leun, 1987b, 1992). The literature on this topic is controversial and cannot be summarized in detail here. The following two sections form an attempt to give an overview and interpretation.

3.6.1 Interaction of exposures given on the same day

Several types of interactions have been reported between different wavelength ranges administered simultaneously or in close temporal proximity. These have led to concepts of processes such as:

- photorecovery: the effect of UVB or UVC is reduced by simultaneous or immediately subsequent exposure to UVA or visible light [The Working Group noted that photoreactivation is a special case of photorecovery but applies only to species that have the ‘photoreactivating enzyme’, photolyase (see Glossary).];
- photoprotection: the effect of UVB or UVC is reduced by prior administration of UVA or visible light;
- photoaugmentation: the effect of UVB or UVC is enhanced by prior, simultaneous or subsequent administration of UVA or visible light.

Photoaugmentation of UVB carcinogenesis by UVA was suggested by several investigators (Urbach et al., 1974; Willis et al., 1981, 1986; Kligman, 1988 [abstract]; Talve et al., 1990) but could not be confirmed by others (Forbes et al., 1978; van Weelden & van der Leun, 1986). The latter investigators found evidence of photorecovery: the effect of UVB plus UVA was smaller than that of the same UVB exposure given alone. The reduction was small; however, UVA reduced the carcinogenic effective dose of UVB by 16%.

Interactions of different wavelength ranges when given simultaneously, prior to or immediately after each other appear to be either nonexistent or unproven, as in the case of photoaugmentation, or small, as in the case of photorecovery. Such interactions currently play a small role in the evaluation of risks (see, for example, Health Council of the
Netherlands, 1986). Other uncertainties in the estimates, such as the dose received, are likely to have a greater influence than interactions. Photoreactivation, is, however, a well-defined process in those species which possess photolyase and may result in reduction of effects.

3.6.2 Long-term interactions

A different type of interaction occurs when exposures to one wavelength band are separated temporally from exposures to another. For example, a prolonged course of UVB exposures, by itself sufficient to induce tumours, is compared with an identical UVB course that is preceded or followed by a course of UVA exposures, usually over several weeks.

Forbes et al. (1978) exposed hairless mice to tumorigenic UVB or to UVB followed by UVA and visible light for 30 weeks. The longer-wavelength exposures reduced the tumorigenic effect of the UVB. Staberg et al. (1983b) gave mice a tumorigenic combination of UVB and UVA and found that subsequent exposures to UVA increased the tumorigenic effect. The UVA was derived from Philips TL40W/09 lamps filtered through 2-mm plain glass to remove the UVB. [The Working Group noted that since the glass transmitted some UVB the increased carcinogenic effect may have been due to added UVB radiation.] Bech-Thomsen et al. (1988a) pretreated lightly pigmented hairless female hr/hr C3H/1if mice with UVA for four weeks before exposure to broad-spectrum UVR. The UVA reduced the carcinogenic effect of the broad-spectrum UVR. This result was not corroborated in a subsequent, similar experiment by the same investigators (Bech-Thomsen et al., 1988b), in which mice were pretreated with radiation from various UVA sources. The purest UVA radiation neither increased nor decreased the carcinogenic effect of UVB.

Slaper (1987) exposed one group of mice daily to UVB and a second group daily to UVA at doses matched for approximately equal carcinogenic effect. In a third group of mice that received the two regimens alternately every week, the carcinogenic effect was less than that in the UVA- or UVB-exposed group. The effective dose in the alternating regimen was estimated to be 80% that in the UVB regimen. The investigator concluded that both UVA and UVB contributed to the carcinogenic effect of the alternating regimen.

[The Working Group noted that the effect of long-term interactions appears to be similar to that of interactions of exposures given on the same day. Photoaddition gives a reasonable prediction, but the combined effects tend to be slightly less than would be predicted.]

3.7 Additional experimental observations

3.7.1 Tumour types

Skin tumours in UV-exposed animals are commonly epidermal, benign papillomas and malignant squamous-cell carcinomas; adnexal neoplasms, mainly basal-cell carcinomas, are less common. Attempts have been made to induce naevi and malignant melanomas. Many tumours are found, since the animals are followed for long periods of time; however, tumours coalesce and regress, and all tumours are not examined histologically.

Squamous-cell carcinoma is the commonest type of tumour found after exposure to UVR. These tumours have been reported in mice exposed to predominantly UVB radiation (Winkelmann et al., 1960, 1963; Epstein & Epstein, 1963; Freeman, 1975; Forbes et al., 1981;
de Gruijl et al., 1983), to predominantly UVA radiation (van Weelden et al., 1988; Sterenborg & van der Leun, 1990) and to predominantly UVC radiation (Lill, 1983; Sterenborg et al., 1988). They have also been found in rats (Putschar & Holtz, 1930; Roffo, 1934, 1939; Hueper, 1942), hamsters (Stenbäck, 1975a) and opossums (Ley et al., 1989) following exposure to broad-spectrum UVR.

Papillomas were reported to be the commonest tumour after exposure of hairless mice to UVR consisting of UVB and UVA (Gallagher et al., 1984b). Papillomas were also reported to precede or accompany squamous-cell carcinomas induced in hairless mice by UVA (van Weelden et al., 1988), UVB (Stenbäck, 1978) or UVC radiation (Sterenborg et al., 1988). Papillomas were also common in rats (Findlay, 1930; Putschar & Holtz, 1930; Stenbäck, 1975a) and hamsters (Stenbäck, 1975a) exposed to broad-spectrum UVR.

The main type of tumour diagnosed after exposure of haired mice to broad-spectrum UVR was fibrosarcomas (Grady et al., 1941, 1943). Squamous-cell carcinomas were less common, but the ratio of carcinomas to sarcomas increased with the number of exposures per week (Grady et al., 1943). Spikes et al. (1977) reported many squamous-cell carcinomas in clipped C3Hf mice irradiated with UVB, especially at low doses; the high-dose group had a much higher proportion of fibrosarcomas. The investigators suggested that the type of tumour induced might be dose-dependent. Norbury and Kripke (1978) found that the type of tumour might depend on immunological factors. They compared UVB tumorigenesis in normal C3H/HeN (MTV-) mice, in T cell-depleted mice and in T cell-depleted mice reconstituted with thymus grafts. In the normal mice, fibrosarcomas predominated; in the T-cell depleted, reconstituted mice, squamous-cell carcinomas predominated. Spindle-cell sarcomas were reported in rats irradiated with sunlight (Roffo, 1934), and fibrosarcomas were seen in opossums irradiated with UVB (Ley et al., 1989).

The diagnosis of fibrosarcoma was questioned by Morison et al. (1986). After C3H/HeNCr (mammary tumour virus-free) haired pigmented mice were exposed to mainly UVB radiation, the tumours induced were almost all squamous-cell carcinomas. The investigators noted that the same type of tumour had been diagnosed in many previous reports as fibrosarcoma; they diagnosed squamous-cell carcinomas by studying specific markers for cell differentiation in the tumours. In a study by Phelps et al. (1989) in which hairless albino Skh/hr-1 mice were exposed to UVA and UVB at 0.3 J/cm² [30 kJ/m²], all mice developed epidermal neoplasia and 25% of animals developed spindle-cell tumours that resembled human atypical fibroxanthoma. [The Working Group noted that earlier studies did not use presently available cellular markers.]

Keratoacanthomas and similar benign epidermal neoplasms have been reported in mice exposed to UVB (Stenbäck, 1978), rats exposed to UVB and UVC (Strickland et al., 1979) and hamsters exposed to UVB (Stenbäck, 1975a).

Actinic keratosis, or solar keratosis, a precursor lesion of squamous-cell carcinomas, has been reported in hairless mice exposed to UVA and UVB (Kligman & Kligman, 1981) and in haired mice exposed to UVB (Stenbäck, 1978).

Basal-cell carcinomas have not been reported in studies in mice. A few studies on UV carcinogenesis in nude mice, which have a deficient immune system, have been reported (Eaton et al., 1978; Anderson & Rice, 1987; Hoover et al., 1987). The skin tumours induced
by mainly UVB radiation in these studies were mostly squamous-cell carcinomas, but in the experiments reported by Anderson and Rice (1987) in nude mice of BALB/c background there were several basal-cell carcinomas. Basal-cell carcinomas were found occasionally in rats exposed to broad-spectrum UVR (Putzchar & Holtz, 1930; Hueper, 1942). [The Working Group noted that the classification of these neoplasms and their relation to the corresponding neoplasms in humans is not clear.]

There is no report in which cutaneous malignant melanoma was induced in mice by UVR alone (Epstein, 1990; van Weelden et al., 1990b; Husain et al., 1991), in spite of concerted attempts to achieve this.

No study was found in which the primary objective was to examine the susceptibility of the eye to UVR; rather, eye tumours were found incidentally in studies designed to investigate skin carcinogenesis. All of the tumours of the eye identified in these reports involved superficial parts of the eye (cornea and conjunctiva); no tumour of the interior eye was reported.

Studies of the effect of UVR on tumour induction in other organs (lymphoma in mice) are few and were not designed to determine this effect (Ebbesen, 1981; Joshi et al., 1986). [The Working Group considered that the data were inadequate for evaluation and that data on survival among treated and control groups, sample selection and analysis of data were limited.]

3.7.2 Dose and effect

Quantitative information is available mainly on the induction of squamous-cell carcinoma in mice. In most of the experiments, exposure was regular, several times per week or every day, until tumours developed. The daily doses of UVR required for skin tumorigenesis are usually well below those present outdoors in the environment, and most experiments have been conducted with UVB doses lower than those required to elicit acute reactions in mouse skin (erythema or oedema). In one experiment in hairless mice, with a UVB dose 33 times lower than that required for acute reactions, 71% of the skin tumours were squamous-cell carcinomas (de Grujil et al., 1983). The effectiveness of UVB radiation is increased at lower dose rates (Kelfkens et al., 1991b).

The higher the dose given, the less time it takes for tumours to appear. In most experiments, the time required for 50% of mice to develop tumours ranged between a few months and one year. By maximizing the exposure regimen in hairless mice (escalating doses of UVB radiation), the time could be reduced to 18 days (Willis et al., 1981). In a few experiments, in both mice and rats, skin tumours resulted from a single exposure to UVB radiation (Hsu et al., 1975; Strickland et al., 1979); in mice, this required a dose that first caused skin ulceration: hairless mice, 60 kJ/m² (Hsu et al., 1975); Sencar mice, 29 kJ/m² (Strickland, 1982).

Quantitative dose–effect relationships have been derived for mice exposed regularly (usually daily) to UVR. The median time to first tumour, \(t_m \), has been used as a measure of the effect and is related to dose level. Dose–effect relationships of the form

\[
 t_m = c D^{-\tau},
\]

where \(c \) is a constant incorporating the susceptibility of the strain of mice as well as the effectiveness of the radiation spectrum, \(D \) is the daily dose of radiation and \(\tau \) is a numerical
exponent giving the steepness of the relationship, have been proposed by several authors. Estimates of r vary from 0.2 (Sterenborg et al., 1988) for small tumours of the skin induced by UVC radiation in hairless mice, to 0.5 (Blum et al., 1959) for large tumours on the ears of haired mice induced by broad-spectrum UVR and to 0.6 (de Gruijl et al., 1983) for small tumours induced by broad-band UVB in hairless mice. Figure 11 (p. 145) illustrates the shape of this dose-response relationship for $r = 0.6$; other forms of the relationship have been proposed (Forbes et al., 1982). All of them provide adequate descriptions of the dose–response within the range of the available data, although extrapolations outside this range differ substantially.

3.7.3 Dose delivery

The tumorigenic effect of UVR depends not only on the dose but also on the temporal pattern of exposure. In general, the effectiveness of treatment increases with the number of fractions of the dose per week (Forbes et al., 1981), for both daily and accumulated doses. A daily dose administered over 12 h is more effective than the same daily dose administered in 1 h (Kelfkens et al., 1991b). The same weekly dose is more effective when given over three to five days than if given in one day (Forbes et al., 1981).

3.7.4 Action spectra

Ideally, the carcinogenic effectiveness of UVR can be expressed as a continuous function of wavelength. That function, called the action spectrum for UV carcinogenesis, is not yet completely delineated. Freeman (1978) made an early attempt to determine this spectrum and found that it was limited to a few narrow bands around the wavelengths 290, 300, 310 and 320 nm. Narrow-band monochromatic sources are difficult to achieve.

Since that time, various action spectra have been proposed to weight the spectral irradiance of a source. Forbes et al. (1982) and Cole et al. (1986) determined dose–effect relationships similar to that shown in Figure 11 for many different UV spectra. By weighting these lamp spectra with various existing action spectra for photobiological effects, effective doses were computed for each experiment. In this way, the investigators tried to align the results from the experiments with different UV spectra into one dose–effect relationship. One of the action spectra (MEE48), originally determined for the induction of oedema in mice 48 h after exposure to UVR and which is similar to the human eryhema action spectrum, fitted well. The authors concluded that the mouse oedema spectrum was also appropriate for describing skin cancer induction (Cole et al., 1986).

Sterenborg and van der Leun (1987) attempted to determine an action spectrum directly from observations on UV carcinogenesis. They exposed hairless albino mice to seven different lamp spectra under otherwise identical circumstances. The lamp spectra overlapped to some extent, and the action spectrum was derived by mathematical fitting. The analysis yielded an action spectrum for the wavelength range 250–360 nm. Slaper (1987) added observations in the UVA region and extended the action spectrum throughout the UVA range (see Fig. 10, p. 141).

The action spectrum shown in Figure 10 is for albino hairless Skh-hr 1 mice with an end-point of 1.0-mm tumours. Although different end-points may yield different action spectra, this curve shows good agreement in the UVB range with the MEE48 spectrum and
also with the observations of Freeman (1978) for wavelengths 300, 310 and 320 nm. [The Working Group noted that the action spectrum for UV carcinogenesis in the wavelength range 300–320 nm may be considered a good approximation.] The different shapes of Figure 10 and MEE48 in the UVC reflect a scarcity of data in this wavelength range. [The Working Group noted that the action spectrum for carcinogenesis by UVC is still highly uncertain.] The MEE48 left widely different options open for the action spectrum of long-wavelength UVA: the effectiveness in the wavelength range 330–400 nm could be either zero or as high as 0.0002 (Cole et al., 1986). More recent data on the carcinogenesis of UVA, used to construct the curve in Figure 10, indicate a mean effectiveness of 0.00015 in this range (Slaper, 1987). [The Working Group noted that this value for the carcinogenic effectiveness for UVA may be regarded as an estimate of the order of magnitude.]

3.7.5 Pigmentation

Pigment was reported to be protective against tumours arising from the conjunctiva in cattle (Anderson, 1963).

Freeman and Knox (1964) also examined the influence of pigmentation in a group of 78 rats composed of 66 pigmented rats of various strains (black, black and white, grey-brown, grey and white) and 12 albinos. Under the same irradiation regimen, the pigmented rats developed tumours in 73% of eyes and the albinos in only 8%. The tumour yield was consistently higher in the pigmented strains than in the albinos. In nine pigmented and 10 albino hamsters exposed for one year, 50% of pigmented animals and 25% of non-pigmented animals developed eye tumours.

Davies and Forbes (1988) exposed closely related albino hairless Skh-hr 1 mice and pigmented hairless Skh-hr 2 mice to broadband UVR from a filtered xenon arc lamp. Especially at high doses, the latent period until 50% of animals had first tumours was longer in Skh-hr 2 mice.

van Weelden et al. (1990a) derived mice of different degrees of pigmentation—'browns' and 'blacks'—by selective breeding from Skh-hr 2 stock and exposed 24 albinos (Skh-hr 1) (van Weelden et al., 1988), 16 'browns' and eight 'blacks' to UVA radiation. The brown mice were less susceptible to skin tumours than the albinos, but the more heavily pigmented blacks were as susceptible as the albinos: the median times for tumour induction were 265 days for albinos, 267 days for blacks and 375 days for browns (van Weelden et al., 1990a).

3.8 Administration with known chemical carcinogens

Since UVR alone produces tumours, it is a 'complete' carcinogen and may thus be involved in cocarcinogenicity. Several investigators have attempted to determine whether UVR has tumour 'initiating' and/or tumour 'promoting' activity when tested in a traditional two-stage protocol. For the purposes of this monograph, a 'tumour initiator' is defined as an agent that, at a stated amount and upon administration once, is incapable of causing tumours in the population of animals unless the skin is subsequently treated with a 'tumour promoter'. A 'tumour promoter' is defined as an agent that, under stated conditions is incapable of causing tumours unless the skin was previously treated with a 'tumour initiator'. The test systems used embody a number of variables, not all of which were necessarily considered by
the authors. For example, UVR has also been shown to influence the immune system, and polycyclic aromatic hydrocarbons are photochemically active.

3.8.1 Administration with polycyclic aromatic hydrocarbons

Most of the studies summarized below demonstrate that UVR has a cocarcinogenic action with other carcinogens. Other reports provide additional information on cocarcinogenesis, on photolysis of polycyclic aromatic hydrocarbons and on other interference with chemical carcinogenesis (Clark, 1964; Ito, 1966; Santamaria et al., 1966; Davies et al., 1972 [abstract]; Shabad & Litvinova, 1972; Stenbäck & Shubik, 1973; Stenbäck, 1975b; Roberts & Daynes, 1980; Gensler & Welch, 1992).

(a) 3,4-Benz[a]pyrene

Groups of 18 female SPF (specific pathogen-free) BALB/c mice, six weeks of age, received 30-min exposures on the shaved dorsal skin to UVB from a Westinghouse FS40 sunlamp (280–320 nm) five times a week for 13 weeks (total dose, 7.0×10^5 J/m2) or no UVB exposure followed one week later by twice weekly applications of 0, 0.1 or 1.0 mg 3,4-benzo[a]pyrene in acetone on the shaved ventral skin for 20 (acetone only), 20 or 10 weeks, respectively. Pre-exposure to UVB enhanced tumour growth in the high-dose group: 29 tumours (of 20 examined histologically, 90% were squamous-cell carcinomas and 10% undifferentiated sarcomas) in the UVB-pretreated group compared to two (squamous-cell carcinomas) in the non-irradiated 3,4-benzo[a]pyrene-treated animals 18 weeks after the first treatment with 3,4-benzo[a]pyrene. No such effect was seen in the low-dose group (Gensler & Bowden, 1987; Gensler, 1988a).

(b) 7,12-Dimethylbenz[a]anthracene

In an attempt to assess the promoting effects of UVR, groups of 15–31 male and 16–22 female Swiss albino mice, 11–18 weeks of age, received a single application of two drops (0.1 ml) of 0 or 0.5% 7,12-dimethylbenz[a]anthracene (DMBA) in acetone on the posterior half of the dorsal skin, followed 14 days later by exposures to UVB (280–320 nm; high-pressure Hanovia hot quartz contact lamp) twice a week for 67 weeks (total dose, 13.33×10^7 ergs/cm2 [133 kJ/m2]) or no exposure. At the end of the UVB treatment, 16/31 mice treated with DMBA and UVB had developed 19 skin tumours, compared to 4/41 and 0/47, respectively, among mice treated with DMBA alone and UVB alone. Exposure to UVB also enhanced the multiplicity and degree of malignancy of DMBA-induced tumours (Epstein & Epstein, 1962).

Groups of 26–42 male and female outbred hairless mice, 7–12 weeks old, received a single application of two drops (0.1 ml) of 0 or 0.5% DMBA in acetone, followed six weeks later by exposures to UVB (280–320 nm; high-pressure Hanovia hot quartz contact lamp) three times a week for 29 weeks (total dose, 15.34×10^7 ergs/cm2 [153 kJ/m2]) or no exposure. All animals were observed for 63 weeks. UVB exposure produced skin tumours in 22/26 animals, and DMBA treatment alone in 3/41; acetone alone produce no skin tumour. Exposure to UVB following DMBA treatment enhanced carcinogenicity with regard to appearance time (first tumour observed at 14 weeks compared to 30 in the group treated with DMBA alone and 20 in that given UVB alone), multiplicity at 58 weeks after DMBA
treatment (40 in 24 animals compared to 22 in 26 animals treated with UVB alone and 3 in 41 animals treated with DMBA alone) and degree of malignancy. Two 'melanomas' appeared in the group receiving the combined treatment (Epstein, 1965).

Groups of 18–46 outbred hairless pigmented mice [sex unspecified], 8–11 weeks old, received a single application of 0.05 ml of 0.4% DMBA (0.2 mg) in acetone or no DMBA. After 13 months, mice treated with DMBA had developed pigmented lesions ('blue naevi') in the treated areas. For the following seven months, mice received UVB (280–320 nm; high-pressure Hanovia hot quartz contact lamp) three times a week or no UVB treatment. Exposure to UVB following DMBA treatment enhanced the growth of naevi into malignant-appearing pigmented tumours ('melanomas'): 5/18 versus 0/41 in the group treated with DMBA alone and 0/39 in the group treated with UVB alone (Epstein et al., 1967). (The Working Group noted the limited reporting on metastases.)

A group of 56 B6D2F1/J mice [sex unspecified], six weeks of age, was irradiated with UVB (280–340 nm; Westinghouse FS40 sunlamp) dorsally for 30 min per day on five days per week (Roberts & Daynes, 1980) for 11.5 weeks (total dose, 6.2 \times 10^5 J/m^2). A control group of 41 mice received no irradiation. Both groups subsequently received a single application of 100 \mu g DMBA in 0.1 ml acetone on the shaved ventral skin, followed four days later by applications of 5 \mu g 12-O-tetradecanoylphorbol 13-acetate (TPA) three times a week for 32 weeks. Tumour yield was significantly decreased at 32 weeks (2.2 versus 4.8 tumours/mouse) in the pre-irradiated mice (Gensler, 1988b).

Groups of 20–24 female hairless Skh-hr 2 mice, six to eight weeks old, received a single application of 0 or 0.5% DMBA in acetone on the dorsal skin. Two weeks later, the animals were irradiated with UVB (290–320 nm; Westinghouse FS40-T12 sunlamp), UVA (320–400 nm; GTE-Sylvania fluorescent black light tubes) or a combination of UVA plus UVB three times a week for 30 weeks or were not irradiated, and were observed for 12 months. All mice receiving DMBA treatment developed multiple 'blue naevi'; virtually none of the untreated mice or mice that received UVR treatment only showed this effect. Irradiation of DMBA-treated animals induced a higher incidence of papillomas (70–100%), squamous-cell carcinomas (30–80%), melanomas (25–33%) and lymphomas (21–50%), than exposure to UVA alone (0–32% papillomas, 0–47% squamous-cell carcinomas, no melanoma and no lymphoma) or to DMBA alone (90, 25, 0 and 5% of these tumours, respectively). The authors also examined selected lesions induced by DMBA alone or by DMBA with UVR for the presence of H- or N-ras mutations. Mutations at codon 61 in N-ras were present in three (two induced by DMBA plus UVR, one by DMBA alone) out of eight of the early pigmented lesions examined and in one out of three of the malignant melanomas examined (induced by DMBA plus UVR); no H-ras mutation was observed (Husain et al., 1991). [The Working Group noted that lesions were not induced by UVR alone.]

3.8.2 Administration with other agents with promoting activity

These studies were designed to evaluate the action of UVR as a tumour initiator.

(a) Croton oil

Groups of 15–53 male and 9–30 female random-bred hairless mice, 9–12 weeks old, received a single exposure to UVB (280–320 nm; high-pressure Hanovia hot quartz contact
lamp) for 30 s (1.3 × 10^7 ergs/cm^3 [13 kJ/m^2]) or no exposure, followed two weeks later by
applications to the dorsal skin of 0 or 0.1 ml croton oil in acetone twice a week for 18 months.
Neither UVB exposure nor croton oil alone produced any skin tumour over the course of the
study. The group of 79 mice that received both UVB exposure and croton oil had eight
persistent skin tumours (one per mouse) (Epstein & Roth, 1968).

Groups of 30 female Swiss mice, eight weeks old, received UVB once (5.5 × 10^7
ergs/cm^2 [55 kJ/m^2]) from Westinghouse FS40T12 lamps or croton oil (0.02 ml of a 2.5%
solution, twice a week for 30 weeks); a group of 60 mice received UVB followed after 10 days
by croton oil for life. UVB alone produced no tumour; croton oil alone produced regressing
tumours, and the combination produced 11 tumours (four papillomas, four fibromas and
three regressing tumours) in seven mice (Stenbäck, 1975c).

Groups of 40 male haired mice (random-bred ‘Hall’ strain), 18 weeks of age, were
cropped and exposed once to UVC (medium-pressure mercury discharge lamp). One group
received no further treatment; the other received one application of croton oil one day
before irradiation and, beginning two weeks later, received applications of 0.25 ml croton oil
(0.5% solution) once a week for 30 weeks. By 35 weeks, the groups had 20 and 23 survivors,
with 0 and 12 skin tumours, respectively (Pound, 1970).

(b) 12-O-Tetradecanoylphorbol 13-acetate

Six groups of 25 eight-week-old female C3H/HeNCr(MTV-) mice were irradiated with
UVB (Westinghouse FS40 sunlamps) on the shaved dorsum for 30 min, five times a week for
two weeks (total dose, 1.44 × 10^5 J/m^2), followed two weeks later by ‘promotion’ with appli-
cations of 0 or 5 µg TPA in acetone twice a week. Ventral irradiation for 30 min, three times a
week for 12 weeks (total dose, 4.54 × 10^5 J/m^2) (to produce a ‘systemic’ effect) was begun two
weeks after completion of dorsal initiation. At 70 weeks, UVB exposure of the dorsum alone
had produced no tumour, and dorsal applications of TPA alone had produced a 5% incidence
of tumours. The combination of these treatments produced a 41% tumour incidence. Ventral
irradiation of animals that had received TPA only produced a 33% incidence, and ventral
irradiation of mice that had received both UVB and TPA produced a 100% incidence. The
authors suggested that these findings reflect a systemic effect—possibly suppression of
immune surveillance or a biochemical influence on the epidermal growth regulatory system
(Strickland et al., 1985).

(c) Benzoyl peroxide

Benzoyl peroxide is considered to be a prototype promoter of two-stage chemical
carcinogenesis in the skin (Slaga et al., 1981). The studies summarized below were motivated,
however, by concerns about the safety of using this compound for treating acne vulgaris.

Groups of Used (Hr) stock hairless albino mice (total, 148) [sex unspecified], three to
four months old, were exposed on the posterior half of the back to UVR (Hanovia hot quartz
contact lamp emitting primarily UVB; 270 mJ/cm^2 [2.7 kJ/m^2]) three times a week for eight
weeks. Four weeks later, the mice were divided into four groups. The final skin tumour
incidences at the irradiated sites were: 38% in the group that received applications of 0.1 ml
of a 0.1% solution of croton oil in acetone on the back skin five times a week for the duration
of the experiment (62 weeks); 5% in the group that received applications of acetone alone;
8% in mice that received applications of the benzoyl peroxide base; and 8% in those that received applications of a 5% lotion of benzoyl peroxide in water five times a week for the duration of the study (Epstein, 1988).

Five groups of Oslo hairless mice (16 males and 16 females) were irradiated under Philips HP3114 sunlamps (mostly UVB) twice a week for 52 weeks (total dose, 26.5 J/cm² [265 kJ/m²]). The mice were treated before or after each exposure with 5% benzoyl peroxide in gel, with the gel alone or with no chemical. Throughout the study, the groups were indistinguishable in terms of the proportion with one or more tumours (median latent period, approximately 40 weeks) and of the total number of tumours per survivor (approximately 1.5 at 40 weeks and approximately 4 at 48 weeks). Thus, benzoyl peroxide did not enhance photocarcinogenesis. The study also included several groups of SENCAR mice treated topically with DMBA once (51.2 µg) or with vehicle followed by benzoyl peroxide twice a week. Benzoyl peroxide reduced the number of DMBA-induced tumours (Iversen, 1988). Two unresolved concerns were raised by the author: Firstly, the fact that benzoyl peroxide reduced the tumorigenicity of DMBA was contrary to the author’s previous experience (Iversen, 1986) and to that of several others; secondly, the UVR dose used in this study was lower (total dose, 265 kJ/m²) than that used in the 1986 study (total dose, 480 kJ/m²), but the tumour response was significantly greater.

(d) Methyl ethyl ketone peroxide

A postulated mechanism for tumour promotion involves the generation of free radicals, possibly with reactive oxygen species, leading to enhanced lipid peroxidation and DNA damage and/or cell phenotype. A study was therefore designed to test whether methyl ethyl ketone peroxide (MEKP), which is known to produce lipid-peroxidizing activity in vivo, acts as a tumour promotor in skin ‘initiated’ by UVR. Furthermore, since glutathione has been shown to be a major endogenous reducing agent which protects against lipid peroxidation, the study also tested diethyl maleate (DEM), which is known to deplete the intracellular level of glutathione in mouse skin.

Groups of 24 male and female hairless albino mice (14–16 weeks old) were irradiated with UVB (280–320 nm; Westinghouse FS40 fluorescent sunlamps; 2054 J/m² daily) for 18 weeks. Three weeks later, topical application of MEKP (20 µl containing 0 or 10 µg MEKP) was begun and continued twice a week for 25 weeks. Other groups received DEM (0 or 1 µg in dibutyl phthalate) 1 h before each MEKP application. Otherwise identical control groups received either the chemical treatments or UVB alone. At 46 weeks, the groups that did not receive UVB irradiation had at most two tumours on two mice (among 21 survivors in mice exposed to MEKP plus DEM). Exposure to UVB produced five tumours in four mice exposed to the solvent, out of 19 survivors; 11 tumours in eight mice exposed to MEKP, out of 21 survivors; and 18 tumours in nine mice exposed to MEKP plus DEM, out of 16 survivors. Using tumour onset rate analysis (Peto et al., 1980), the overall effect of MEKP was statistically significant. Tumour enhancement by MEKP was greater in the presence of DEM (Logani et al., 1984).
3.9 Interaction with immunosuppressive agents

Investigations have been reported on agents known to influence immunological responses in humans and on agents chosen to test some aspect of immunological response in mice. [The Working Group noted that in most cases the effect on the immune system of the animals was not evaluated directly; these agents have effects other than immunosuppression, which may explain their interaction with photocarcinogenesis.]

Three groups of 12 male Skh-Hrl hairless mice, eight weeks of age, were irradiated with 280–320 nm UVB (Westinghouse FS40T12 sunlamps) on five days per week for 30 weeks at daily doses of 470 J/m². Two weeks after the first UVB exposure, one group received subcutaneous injections of 0.1 ml anti-mouse lymphocytic serum twice a week for 20 weeks; a second received intraperitoneal injections of 12 mg/kg bw 6-mercaptopurine (Purinethol) five times a week for 20 weeks; and a third received intraperitoneal injections of 0.1 ml isotonic saline five times a week for 20 weeks. Treatment with anti-mouse lymphocytic serum resulted in an earlier appearance and a greater numbers of tumours than did treatment with saline; in contrast, 6-mercaptopurine appeared to delay the appearance of tumours (Nathanson et al., 1976).

Groups of 24–28 female albino HRA/Skh-1 hairless mice, 21–35 weeks of age, were irradiated with UVR (UVB from an Oliphant FL40SE tube and UVA from six Sylvania 40BL tubes) to simulate the UVR portion of terrestrial sunlight on five days per week for 10 weeks to achieve a MED. At the same time, the animals received intraperitoneal injections of 15 mg/kg bw azathioprine in 0.1 ml glycine buffer, 10.6 mg/kg bw cyclophosphamide in 0.1 ml glycine buffer or 0.1 ml vehicle alone. At day 200, mice receiving UV irradiation alone had a tumour incidence of 77%; those also receiving azathioprine had an incidence of 96% (marginally significant enhancement of tumour growth); and those receiving cyclophosphamide had an incidence of 85% (nonsignificant increase) (Reeve et al., 1985).

Groups of 15 female albino HRS/J hairless hr/hr mice, eight weeks old, were irradiated with UVB (280–320 nm; Westinghouse FS40 sunlamps) on five days a week for 24 weeks; further groups also received injections of 4 or 8 mg/kg bw azathioprine or 10 or 25 mg/kg bw cyclosporine three times a week. The mean latent period for tumour development was 16 weeks in the group receiving UV irradiation only and 12–13 weeks in the groups also receiving azathioprine or cyclosporine, indicating enhancement of photocarcinogenesis by both drugs (Nelson et al., 1987).

Groups of female C3H/HeN(MTV-) mice [initial numbers unspecified], four to six weeks of age, received grafts of fragments of an antigenic (‘regressor’) tumour (fibrosarcoma) previously induced in a host animal by UVB. Some animals received no further treatment; other groups received UVB irradiation (Westinghouse FS40; 5 kJ/m² per day on five days a week for four to six weeks), subcutaneous injections of 25 or 75 mg/kg bw cyclosporine once a day on eight consecutive days, or injections of 20 mg/kg bw cyclophosphamide 1, 3, 6, 9 and 13 days after tumour challenge. Tumours grew progressively in the groups treated with UVB or cyclosporine, but not in the groups receiving no further treatment or cyclophosphamide (Servilla et al., 1987).

Groups of six female albino HRA/Skh-1 hairless mice, 10–12 weeks of age, were irradiated with UVA plus UVB (one Oliphant FL40SE tube and three Sylvania F4/350 BL tubes)
on five days a week until death (about 35 weeks). During that time, they were also injected intraperitoneally with 15 mg/kg bw azathioprine, 20 mg/kg bw prednisolone or 15 mg/kg bw cyclophosphamide in 0.1 ml saline or given 60 mg/kg bw cyclosporine in 0.1 ml peanut oil by gavage or 0.1 ml vehicle alone. Azathioprine, cyclophosphamide and cyclosporine all significantly enhanced photocarcinogenesis with regard to median latent periods and tumour multiplicity. Prednisolone did not enhance this effect, nor did it interfere with the enhancement by other drugs when given in combination with them (Kelly et al., 1987).

Groups of 15–32 female albino Skh-hr 1 hairless mice, 10–12 weeks of age, were irradiated with UVA plus UVB (250–700 nm; one Oliphant FL40SE tube, three Sylvania F40/350 BL tubes and two True-Lite [Duro-Test Corp] tubes) on five days per week for 12 weeks. Two weeks after the first irradiation, mice received intraperitoneal injections on five days a week of 15 mg/kg bw azathioprine or 6-mercaptopurine in 0.1 ml saline or 0.1 ml vehicle alone. Both compounds significantly enhanced skin photocarcinogenesis with regard to median latent period, proportion of malignant:benign growths and tumour multiplicity (Kelly et al., 1989).

3.10 Molecular genetics of animal skin tumours induced by ultraviolet radiation

Three skin papillomas and three skin carcinomas produced in female SENCAR mice after a single exposure to UVB (280–315 nm; Westinghouse FS20; 70 kJ/m²) were examined for ras gene alterations. A five- to 10-fold increase in cHa-ras RNA gene expression associated with the gene amplification was found in papillomas and carcinomas, while DNA from carcinomas, but not from papillomas, induced foci in the NIH-3T3 cell transfection assay (Husain et al., 1990).
4. Other Relevant Data

4.1 Transmission and absorption in biological tissues

UVR may be transmitted, reflected, scattered or absorbed by chromophores in any layer of tissue, such as the skin and eye. Absorption is strongly related to wavelength, as it depends on the properties of the responsible chromophore(s). Accordingly, transmission is also wavelength-dependent. Transmission and other optical properties are affected by changes in the structure of the tissue and, especially in the case of the lens of the eye, by ageing.

Absorption of radiation by a tissue chromophore is a prerequisite for any photochemical or photobiological effect; however, absorption does not necessarily have a biological consequence.

4.1.1 Epidermis

Since UVR-induced skin cancer is an epidermal phenomenon, this section focuses on epidermis and excludes the dermis.

The epidermis, a tissue with a high replication rate, can be divided functionally into two: an inner, living part (60–160-μm thick in humans) of cells at various stages of differentiation and the outermost, non-living, terminally differentiated stratum corneum (8–15-μm thick in humans). The dividing cell population is located in the innermost basal layer of the living epidermis. Optical properties have usually been studied using isolated stratum corneum or whole epidermis. Absorption and scattering of UVR by the stratum corneum afford some protection to the living part of the epidermis from UVR exposure.

Human and mouse epidermis have important structural differences. The living part and the stratum corneum of human epidermis have about 10 cell layers each. In mice, the living part has two to three cell layers and the stratum cornea one to two cell layers. The interphase of human epidermis and dermis is highly undulated (i.e., epidermal thickness varies), whereas in the mouse it is flat.

Skin contains sebaceous glands which secrete lipid-containing sebum, which forms a film on the stratum corneum.

(a) Humans

The optical properties of human skin have been reviewed (Anderson & Parrish, 1981, 1982).

Everett et al. (1966) used a variety of methods to obtain whole epidermal and stratum corneum preparations of human skin. Transmission characteristics (from 240 to 700 nm) were measured using a recording spectrophotometer via an integrating sphere which permits the measurement of forward scattered radiation. Transmission values of whole epidermis in
white skin ranged from 1% at 250 nm to 44% at 320 nm, while transmission at 400 nm was about 50%.

Kaidbey et al. (1979) compared the optical properties (250–400 nm) of whole epidermis and stratum corneum from black and white skins. In general, the absorption spectra from the stratum corneum were similar in shape and magnitude; however, the absorption spectra for whole epidermis were clearly different: At about 300 nm, the absorbance (accounting for scattering) of black epidermis was twice that of white epidermis.

Anderson and Parrish (1981, 1982) presented data which show that epidermal transmission between 260 and 290 nm will be overestimated if no correction is made for tissue fluorescence (330–360 nm). This is most evident at about 280 nm and is consistent with tryptophan or tyrosine fluorescence.

BruIs et al. (1984a) measured transmission in whole human epidermis and stratum corneum of UVR between 248 and 546 nm, using a solar blind detector which corrects for fluorescence, and found results different from those of Everett, in particular, that UVC transmission was one to two magnitudes lower. The transmission spectra of whole epidermis and stratum corneum showed a similar general shape but with differences in minima and magnitude. The minimum for epidermis was 265 nm and that for stratum corneum was 275 nm, presumably reflecting different chromophores in those tissues. At 254 nm, transmission in stratum corneum was about two orders of magnitude greater than that in whole epidermis. At about 300 nm, this difference was only one order of magnitude. The transmission in stratum corneum from previously sun-exposed skin was about one order of magnitude less than that in unexposed epidermis at 254 nm. The difference was less at wavelengths > 290 nm. The minimal transmission in stratum corneum from previously sun-exposed skin was shifted from 275 to 265 nm. The authors also showed that the relationship between tissue thickness and transmission of UVR and visible light (log scale) is linear.

BruIs et al. (1984b) studied the relationship between the MED of UVB (filtered mercury arc) and UVC (germicidal lamp) and epidermal transmission. A clear linear (log–log) relationship was demonstrated; the MED increased with decreased transmission. Repeated exposure to UVB resulted in higher MEDs of UVB and UVC and decreased transmission of UVB (only epidermis measured) and UVC (epidermis and stratum corneum measured).

Beadle and Burton (1981) extracted skin lipids from human scalps and measured their transmission spectra in hexane. They estimated that lipid concentrations normally present on the skin surface of the forehead would reduce transmission at 300 nm by about 10%.

(b) Experimental systems

No data are available on transmission in the stratum corneum of mice. Sterenborg and van der Leun (1988) measured transmission of 246–365 nm in Skh-hr 1 mouse epidermis in vitro. Minimal transmission (about 2%) was observed at 254 nm and 270 nm; 10% was transmitted at 290 nm, 50% at 313 nm and 70% at 365 nm. Agin et al. (1981a) studied changes in optical properties of the epidermis of six to eight Skh-1 albino and Skh-2 pigmented (ears and tails) hairless mice irradiated dorsally with a single, 125-h exposure to a UVA source (GE F8T5-BL) with and without a 3-mm glass filter. When unfiltered, 1.4% of the radiation was < 320 nm and when filtered, 0.12% was < 320 nm. The mid-back (whole epidermis) was examined by forward scattering absorption spectroscopy (250–400 nm) at
48 h, 96 h, nine days and 23 days. With the filtered source, there was an increase in absorbance across the spectrum at 48 h, and the absorption spectrum was similar to that of control skin. Transmission returned to the control baseline by 23 days. With the unfiltered source, there was a smaller increase towards baseline absorbance at 48 h. With time, there was a general decrease in absorbance, except at 250–280 nm at which there was an increase at nine and 23 days. At 23 days, the spectrum had not returned to baseline level, despite a normal histological appearance.

de Grujil and van der Leun (1982a) studied the effect of repeated exposure to UVR on epidermal transmission in Skh-hr 1 hairless albino mice. Groups of 11–40 mice were exposed to daily doses of UVR ranging from 0.11 to 1.9 kJ/m² from Westinghouse FS-40 sunlamps. Transmission measurements corrected for fluorescence of the epidermis were made at 313, 302 and 297 nm. After six weeks’ exposure, the higher daily doses resulted in decreased transmission at all wavelengths. The optical density (the negative logarithm of transmission) ratios for the three wavelengths were fairly constant with each dose. There was a simple linear relationship between duration of treatment, increased optical density at 297 nm and epidermal thickness, measured microscopically from frozen sections, which indicates that increased optical density is a result of UVR-induced epidermal hyperplasia. These data show that UVR-induced changes in epidermal transmission may modify the UVR dose–response relationship for skin cancer.

(c) Epidermal chromophores

The influence of chromophores on the optical properties of the epidermis has been reviewed by Anderson and Parrish (1981). The main chromophores are urocanic acid (λ_max, 277 nm at pH 4.5), DNA (λ_max, 260 nm at pH 4.5), the aromatic amino acids tryptophan (λ_max, 280 nm at pH 7) and tyrosine (λ_max, 275 nm at pH 7), and melanins (Morrison, 1985).

Urocanic acid is the deamination product of histidine and is present in human and guinea-pig epidermis (mainly stratum corneum) at about 35 μg/cm² dry weight. It exists in two isomers, trans (E) and cis (Z); the trans-isomer is converted to the cis-isomer upon UV irradiation. The absorption spectra of the two isomers are virtually superimposable, but the extinction coefficient of the cis isomer at λ_max is 20% lower (Morrison, 1985). Norval et al. (1988) quantified urocanic acid isomers in mouse (C3Hf Bu/Kam) skin during development and after exposure to UVB radiation. Fetal dorsal mouse skin had a low total urocanic acid content, which increased in neonatal and older animals. Exposure to UVR increased the proportion of the cis-isomer within 16 h from 4.7% in nonirradiated mice to 31%, and this was maintained for days (16% after seven days). The photostationary state for in-vivo isomerization in guinea-pig skin is 45% cis-/55% trans-isomer (Baden & Pathak, 1967).

DNA is not present to any extent in the stratum corneum of guinea-pigs (Suzuki et al., 1977). Bruls et al. (1984a) attributed the differences in transmission minima between whole epidermis (265 nm) and stratum corneum (275 nm) in humans to the lack of DNA. Absorption by protein occurs throughout the epidermis.

Melanins are stable protein polymers packaged in melanosomes, produced by melanocytes and transferred to keratinocytes. Melanins absorb broadly over the UV and visible spectrum although they are not neutral density filters of the skin. For example, 3,4-dihydroxyphenylalanine (dopa)–melanin shows a steady decline in optical density
between 210 and 340 nm (Anderson & Parrish, 1981). There is no significant racial difference in the number of melanocytes/unit area of a given body site (Szabó et al., 1972), so that differences in the transmission properties of black and white skin are believed to be due to differences in melanin content and in the packaging and distribution of melanosomes in the epidermis (Kaidbey et al., 1979).

(d) Enhancement of epidermal penetration of ultraviolet radiation

Prolonged exposure of skin to water increases sensitivity to UVB. This effect is thought to be due to the removal of UVR-absorbing compounds, especially urocanic acid, from the stratum corneum (Anderson & Parrish, 1981).

Spectral remittance at 300-400 nm has been measured in normal and psoriatic white skin after the application of mineral oil. No effect was observed in normal skin, but remittance in psoriatic skin was reduced within seconds after application of oil, implying greater transmission (Anderson & Parrish, 1982). A similar enhancement of transmission was proposed to explain the observation that topically applied arachis oil enhances tumorigenesis by solar-simulated radiation in hairless albino mouse skin (Gibbs et al., 1985).

4.1.2 Eye

(a) Humans

Boettner and Wolter (1962) measured transmission of direct and forward scattering UVR (220–400 nm) in the cornea, aqueous humour, lens and vitreous humour from nine freshly enucleated normal eyes. There was no corneal transmission of < 300 nm, beyond which the transmission spectrum showed a very steep increase to about 80% transmission at 380 nm (the curve was almost vertical between 300 and 320 nm). Aqueous humour transmitted > 220 nm, with a steep rise to 90% transmission at 400 nm and no evidence of scattering. In a young (4.5-year-old) lens, transmission started at 300 nm with a peak at 320 nm, declining sharply to no measurable transmission between 370 and 390 nm; thereafter, it showed a steep increase. A similar but slower pattern was reported for two older lenses (53 and 75 years old), with greater light scattering. Transmission in the vitreous humour began at 300 nm with a steep increase to 80% transmission at 350 nm. Lerman (1988) showed that transmission of UV at 300–400 nm in normal human lenses decreases with age between three days and 82 years. A review by Sliney (1986) stated that 1% of incident radiant energy in the 300–315 nm range reaches the human retina early in life.

(b) Experimental systems

Kinsey (1948) measured transmission of direct UVR [no mention of instrumentation to detect scattering] in the corneal epithelium, whole cornea, aqueous humour, lens and vitreous humour of young adult albino rabbits. The cornea, aqueous and vitreous humor absorbed virtually all radiation at < 300 nm; the lens absorbed > 90% radiation at wavelengths < 370 nm.

Bachem (1956) measured absorption of UVR at 293–435 nm by the lens and cornea from rabbit eyes. Few technical details were given, but the author indicated that scattering was taken into account. The cornea absorbed all radiation at 293 nm, and the lens absorbed
all radiation < 334 nm. Calculation of absorption by the lens in situ gave a maximum at 365 nm, with little or no absorption at > 400 and < 300 nm.

Ringvold (1980) studied the absorption of UVR at 200–330 nm by cornea from young adult albino rabbits, rats, guinea-pigs and domestic cats. In contrast to the results of other studies, the cornea did not completely absorb wavelengths < 300 nm; depending on the species, absorption at 300 nm ranged from about 30 to 80%. [The Working Group noted that this discrepancy cannot be explained by scattering, as presumed failure to take its effect into account would overestimate absorption.]

4.2 Adverse effects (other than cancer)

This section deals generally with adverse effects of UVR; however, beneficial effects also occur in humans. The vitamin D₃ precursor, previtamin D₃, is formed in the epidermis and dermis through the photochemical action of UVB (Holick et al., 1980). The total daily requirement of vitamin D₃ (cholecalciferol) is supplied in most people by the combination of synthesis in the skin and contribution from dietary sources of animal origin. Older people are at particular risk for developing vitamin D₃ deficiency, partly because the capacity for its formation decreases with age (MacLaughlin & Holick, 1985). The sunscreen para-aminobenzoic acid efficiently blocks the photosynthesis of previtamin D₃ in the skin (Matsuoka et al., 1987). It has been estimated that exposure of the cheeks for 10–15 min in the midday sun in Boston, USA, would be sufficient to provide the daily requirement of vitamin D.

4.2.1 Epidermis

(a) Humans

The most prominent acute effects of UVR on human skin are erythema ('sunburn') and pigmentation, with cellular and histological changes.

(i) Erythema and pigmentation (sunburn and suntanning)

Dose–response curves for erythema were constructed for four radiation wavelengths, 254, 280, 300 and 313 nm, by Farr and Diffey (1985); the eryhemal response on the back was assessed quantitatively by a reflectance instrument. At 254 nm, erythema was maximal approximately 12 h after irradiation at doses up to about five times the MED. At higher doses, erythema was more persistent, with little change in intensity from about 12 h to at least 48 h after irradiation.

At 313 nm, with doses around the MED, the maximal response was seen 7 h after irradiation; with doses of two to three times the MED, the maximal response occurred at about 4 h. The MED at 254 and 280 nm was substantially lower than that at 300 and 313 nm; however, the slopes of the dose–response curves for erythema with 254 nm and 280 nm radiation were much flatter than those at 300 nm and 313 nm (Farr & Diffey, 1985).

The time-course of UVA erythema following irradiation with a high-intensity UVA source (predominantly 360–400 nm) was found to be biphasic. Erythema, which may be due to heat, was present immediately. It was minimal at about 4 h then increased between 6 and 24 h. The intensity of the early phase was dose-rate dependent, whereas the intensity in the latter phase depended on dose only. The slope of the log dose–erythema response to UVA at 24 h did not differ from that to UVB (Diffey et al., 1987).
A number of variables affect the observation of erythema, including anatomical site, time of observation after irradiation, size of irradiated area, method of recording erythema and season (Diffey, 1982).

The pharmacological changes that may be responsible for erythema have been studied. Plummer et al. (1977) examined suction blisters raised on UVB-inflamed human abdominal skin. Bioassayable prostaglandin activity was elevated 6 and 24 h after irradiation, and levels of prostaglandin $F_{2\alpha}$, measured by radioimmunoassay, were elevated at 24 h; levels had returned to normal at 48 h, but erythema persisted. Greaves et al. (1978) extended these observations. Following UVC irradiation, arachidonic acid and prostaglandin E_2 and F_2 levels were elevated at 6 h, reached a maximum between 18 and 24 h, when erythema was most intense, but returned to control levels by 48 h, at which time the erythema had subsided. Indomethacin substantially reduced blood flow, with a good correlation between the reduction in visible erythema and prostaglandin E_2 and F_2 activity in irradiated skin. The results are compatible with the view that UVC-induced erythema is mediated by products of arachidonic acid metabolism. Changes in UVB-induced erythema were similar to those with UVC at 24 h, but by 48 h the levels of arachidonic acid and of metabolites had returned to normal, although erythema persisted. Further, although indomethacin suppressed prostaglandin formation, it altered blood flow only slightly, indicating that other factors must play an important role in inflammation following UVB irradiation. Elevated histamine levels have also been observed, but antihistamines have little effect in diminishing erythema (Gilchrest et al., 1981).

Increased pigmentation of the skin by UVR occurs in two distinct phases: immediate pigmentation and delayed tanning (Hawk & Parrish, 1982; Gange, 1987). Immediate pigmentation, thought to result from oxidation and redistribution of melanin in the skin, begins during irradiation and is maximal immediately afterwards; it occurs following exposure to UVA and visible light and may fade within minutes or, after greater doses to people with darker skin, may last up to several days. Delayed tanning is induced maximally by exposure to UVB and becomes visible about 72 h after irradiation. It is associated with an increase in the number of melanocytes as well as with increased melanocytic activity, elongated dendrites, increased tyrosinase activity and increased transfer of melanosomes to keratinocytes. Small freckles may be formed, particularly in fair-skinned individuals.

Not all pigmentary changes induced by UVR are localized at the site of irradiation. Experimental exposures to UVB three times a week for eight exposures at the MED increased the number of melanocytes and produced larger, more dendritic melanocytes in both exposed skin and, to a much lesser extent, areas of skin shielded from the radiation. The increase in melanocyte number in both exposed and covered areas was greater in individuals whose melanocyte density was lower prior to exposure than in individuals with a high initial density (Stierner et al., 1989).

The erythemal and tanning responses of human skin are genetically determined. Responses to a first seasonal exposure of about 30 min to the midday sun have been used as part of the basis for a skin type classification for white-skinned people ranging from Celtic to Mediterranean (Morison, 1983a; Pathak et al., 1987):

- **Skin type I**: Always burn, never tan
- **Skin type II**: Usually burn, tan less than average (with difficulty)
Skin type III Sometimes mild burn, tan about average
Skin type IV Rarely burn, tan more than average (with ease)

UVA radiation produces immediate changes in melanocytes in white-skinned people. In individuals with type-II skin, multiple pinocytotic vesicles, larger vacuoles, swelling and partial-to-total dissolution of the inner membranes of mitochondria and numerous small vesicles associated with an enlarged Golgi apparatus were seen with doses that did not produce immediate pigment darkening (Beitner & Wennersten, 1983). In those with type-III skin, similar changes occurred but only with doses that produced immediate pigment darkening (Beitner, 1986).

Three Japanese skin types have been described on the basis of personal reactions to the sun (Kawada, 1986). Experimental exposure to monochromatic UVR showed that the MED correlated well with skin type. Immediate tanning occurred but was not related to skin type. After irradiation with the minimal dose that would produce immediate tanning, the tan faded within 3–15 min; after greater exposures, the tan remained longer but never for more than 60 min. The action spectrum for immediate tanning had a maximum at 320 nm and decreased gradually towards 400 nm. New pigment formation (delayed tanning) after exposure to 290 nm and 305 nm radiation began about 65 h after irradiation and increased until it reached a maximum at 124 h (with a dose four times the MED) or 151 h (with a dose eight times the MED). Following a dose three times the MED, some delayed tanning was still evident after two months. The minimal melanogenic dose (producing delayed tanning) was greater than the MED for all Japanese skin types, in contrast to findings in white Caucasians.

Parrish et al. (1981) showed that repeated daily exposure to doses of broad-band UVB and UVA lower than the MED lowered the threshold for both erythema and true melanogenesis for several subsequent days; the threshold for melanogenesis was decreased to a greater extent than that for erythema, a separation that was more pronounced for UVA than for UVB radiation.

(ii) Pigmented naevi

Exposure to the sun appears to stimulate the occurrence and behaviour of acquired pigmented naevi. Kopf et al. (1985) showed, in 80 consecutive patients with dysplastic naevus syndrome, that the concentration of naevi on areas of the thorax protected relatively well from the sun was substantially lower than that on areas exposed to the sun. Augustsson et al. (1990) showed that, in melanoma cases as well as in controls, the concentration of common naevi was higher on the sun-exposed skin of the back than on the protected skin of the buttocks. An Australian study compared naevi excised in summer to those excised in winter in Western Australia. Inflammation, regression, mitotic activity and lymphocytic infiltration were significantly more prevalent in naevi excised in summer than in winter (Holman et al., 1983b; Armstrong et al., 1984). [The Working Group noted that these observations may be confounded by the site of the naevi.]

In an Australian cross-sectional study of 511 people, the presence of palpable naevi on the forearm was associated with female sex, young age, not having southern European grandparents, being born in Australia and intermediate categories of variables indicating sun exposure (Armstrong et al., 1986).
Gallagher *et al.* (1990a,b) studied risk factors for common naevi in school children in Vancouver, British Columbia, Canada. The number of naevi increased with age (from six to 18 years). Naevi occurred most commonly on intermittently than on constantly exposed parts of the body and less commonly in skin that was rarely exposed. Light and freckled skin, propensity to burn rather than tan upon exposure to the sun and a history of frequent or severe sunburn were associated with a large number of naevi.

Green *et al.* (1988b) compared the prevalence of melanocytic naevi (benign pigmented moles) in children aged 8–9 in Kiddermister, United Kingdom, and Brisbane, Australia. Regardless of skin colour, the mean number of naevi was at least five times larger in the Australian children than in the British children. In both populations, naevi were more prevalent in children with fair skin.

(iii) Ultrastructural changes

Jones, S.K. *et al.* (1987) and Roth *et al.* (1989) each described a patient who developed many freckle-like lesions on all exposed sites following repeated exposure to high-dose UVA from a home sunbed for tanning the skin. Biopsy showed increased numbers of large melanocytes in the basal layers.

Rosario *et al.* (1979) examined the sequential histological changes produced by single exposures to UVA, UVB and UVC radiation on untanned skin of the lower back. Exposures were designed to cause approximately equal degrees of erythema. Following UVB and UVC, dyskeratotic cells ('sunburn cells') were scattered throughout the malpighian layer of the epidermis at 24 and 48 h. By 72 h and seven days, they formed a continuous band in the upper malpighian layer or the stratum corneum. Epidermal hyperkeratosis, parakeratosis and acanthosis appeared concurrently at 72 h. The granular layer was focally absent at 24 and 48 h and had increased focally at 72 h and seven days. There was a minimal-to-moderate lymphocytic infiltrate in the dermis which was most pronounced after 48–72 h. Infrequent mitotic figures were observed in keratinocytes. UVA caused fewer dyskeratotic cells at all time intervals, and these never coalesced into a band. UVA, however, elicited the greatest degree of inflammation at 24, 48 and 72 h in terms of both quantity and depth of cellular infiltrate. Endothelial cell swelling, nuclear dust and extravasation of red blood cells were generally observed together. These dermal findings were more pronounced at 72 h. Neither epidermal hyperkeratosis, parakeratosis nor acanthosis was observed. Intracellular oedema of moderate degree was noted with all wavebands at all time intervals. The authors considered that the production of more prominent dermal changes by UVA than by UVB and UVC might be related to greater penetration of longer wavelengths. The histological changes returned to normal earliest after UVB and latest after UVA irradiation.

Pearse *et al.* (1987) examined the effects of repeated irradiation with UVB (0.5, 1 and 2 times the MED three times a week for six weeks) and UVA (6 J/cm² [60 kJ/m²] three times a week for three weeks). UVB irradiation at twice the MED led to significant increases in epidermal thickness, stratum corneum thickness and keratinocyte height, as did UVA irradiation. Both UVA and UVB significantly increased glucose-6-phosphate dehydrogenase activity and decreased succinic dehydrogenase activity throughout the epidermis. The autoradiographic labelling index was significantly increased following the highest dose of UVB.
The benign skin changes attributed to sunlight and seen on physical examination include wrinkles, atrophy, cutis rhomboidalis nuchae (thick, yellow, furrowed skin, particularly on the back of the neck), yellow papules and plaques on the face, colloid milium (firm, small, yellow, translucent papules on the face, forearms and hands), telangiectasia, diffuse erythema, diffuse brown pigmentation, ecchymoses in sun-damaged areas, freckles, actinic lentigo (large, irregular, brown areas), Favre–Racouchot syndrome (yellow, thick comedones and follicular cysts of the periorbital, malar and nasal areas) and reticulated pigmented poikiloderma (reddish-brown reticulated pigmentation with telangiectasia and atrophy and prominent hair follicles on exposed chest and neck) (Goldberg & Altman, 1984). Although most commonly seen in fair-skinned Caucasians, these changes may also be seen in Chinese heavily exposed to the sun (Giam, 1987). A visual system using facial photographs has been developed to enable grading of the degree of elastosis (Cameron et al., 1988).

Holman et al. (1984a,b) made silicone rubber moulds of the microtopography of the skin of the hands of 1216 subjects and developed a grading system to describe alterations in skin surface characteristics observed under a low-power microscope. Using multivariate analysis, independent risk factors for topographic evidence of actinic skin damage were: male sex, age, tendency to burn upon exposure to the sun and outdoor occupation. Similar results were reported by Green (1991).

Everett et al. (1970) reported ultrastructural changes in the epidermis of six elderly, fair-skinned, freckled, blue-eyed, Caucasian male farmers with a history of multiple actinic keratoses and skin cancers. Light microscopy showed effacement of epidermal rete ridges and an irregular decrease in epidermal thickness in areas of skin exposed to sunlight. Three groups of changes were apparent upon transmission electron microscopic examination: firstly, local areas of degeneration involving groups of adjacent cells, with degenerative changes resembling dyskeratosis in both the basal and the spinous layers of the epidermis; secondly, disturbed cellular cohesion, with variable numbers, distribution and degrees of maturity; and thirdly, changes in epidermal pigment—with the melanin concentration varying from none to excessive—and melanosome complexes that were often abnormally large.

Kligman (1969) described the changes in elastic tissue (elastic hyperplasia or actinic elastosis) seen in the dermis of sun-exposed Caucasian facial skin. Such changes were quite advanced before the extent of the damage became visible clinically. Some elastic hyperplasia was seen in elderly blacks over the age of 70, but the changes were markedly less extensive than those seen in whites.

Bouissou et al. (1988) studied elastic fibres in protected skin and skin highly exposed to the sun from normal Caucasians of different ages, using light and electron microscopy. In skin exposed to the sun, there was elastotic degeneration in the reticular dermis and progressive thickening and curling of the elastic fibres in the upper dermis. Altered fibres progressively formed thick, irregular masses, with clumps of amorphous, granular, elastotic material and large areas of uneven staining appearing frequently thereafter. Electron microscopy revealed that normal collagen and elastotic material were often contiguous but never continuous.
(iv) Keratosis

The occurrence of keratosis, a benign but probably premalignant squamous neoplasm of the skin (Marks et al., 1988), has been studied in relation to exposure to sunlight in several cross-sectional studies.

Chronic solar damage (assessed by cutaneous microtopographs and paraocular photographs) was associated with keratosis, after adjustment for age, in a study of 1216 people in Busselton, Australia (Holman et al., 1984a). A similar association between cutaneous microtopography and prevalence of keratosis was observed by Green (1991) in a study of 1539 people in Nambour, Australia.

Vitas et al. (1990) conducted a study of 808 white watermen in Maryland, USA. The prevalence of keratosis was 25%. The risk factors for this condition were found in a multivariate analysis to be age, individually estimated cumulative exposure to sunlight, blue eyes, childhood freckling and a tendency to sunburn.

Marks et al. (1983) studied 2113 adults in Maryborough, Australia. The prevalence of keratosis was 56.9%. Adjusted for age, the prevalence of keratosis was significantly associated with being born in Australia, with a tendency to sunburn and not tan and with blue eye colour. In another survey by these authors, of 2000 adult in-patients from a hospital in Melbourne, Australia, the prevalence of keratosis on the light-exposed areas of the head and neck, forearms and back of hands was 37.7%. Prevalence of keratosis was significantly associated with age and with being born in Australia and, among men, with outdoor occupation (Goodman et al., 1984). The Melbourne and Maryborough populations were compared further by Marks and Selwood (1985), who attributed the higher prevalence of keratosis in Maryborough to the fact that this population had a 14.2% higher eryhemal UVR level.

Foley et al. (1986) studied 766 consecutive patients with keratosis. Lesions on the hands and forearms in men were seen more often on the right side than on the left, which the authors attributed to the higher exposure of the right side while driving an automobile. In women, more lesions of the head and neck were on the left side.

(v) Photosensitivity disorders

Abnormal reactions to solar radiation, termed photosensitivity disorders, occur in a relatively small number of exposed individuals; these have been reviewed comprehensively (Harber & Bickers, 1981; Bernhard et al., 1987). Genetic and metabolic diseases that may be associated with photosensitivity include xeroderma pigmentosum, phenylketonuria, Bloom’s syndrome, Cockayne’s syndrome, Rothmund–Thomson syndrome, certain porphyrias, Hartnup syndrome and pseudoporphyria cutanea tarda. The excision repair disorders are discussed on pp. 191–194. Defects in pigmentation due to an absence of melanocytes (vitiligo) and defective functioning of melanocytes (albinism) also confer susceptibility to UVR because of failure to develop photoprotection through tanning responses.

In idiopathic photodermatoses, the primary abnormality is an acquired alteration in reaction to sunlight. The commonest form is polymorphous light eruption, in which individuals who previously tolerated sun exposure develop itchy papules, vesicles or erythematous patches or plaques on exposed areas after moderate exposure to the sun (Bernhard et al., 1987). Other photosensitivity conditions include solar urticaria (Armstrong, 1986),
hydroa vacciniforme (hydroa aestivale) (Halasz et al., 1983) and actinic reticuloid (Bernhard et al., 1987).

Photoaggravated dermatoses are conditions that may occur in the absence of exposure to sunlight but can be induced or exacerbated by such exposure. The commonest is recurrences of herpes simplex viral eruptions, usually on the upper lip; this viral infection has been reproduced by exposure to artificial sources of UVR (Spruance, 1985).

Other skin diseases reported to be photoaggravated include lupus erythematosus, Darier's disease, acne vulgaris, atopic dermatitis, bullous pemphigoid, disseminated superficial actinic porokeratosis, erythema multiforme, lichen planus, pellagra, pemphigus, pityriasis alba, pityriasis rubra pilaris, psoriasis, acne rosacea, seborrhoeic dermatitis and transient acantholytic dermatitis (Grover's disease) (Bernhard et al., 1987).

(b) Experimental systems

Agin et al. (1981b) found that single exposures to UVA plus UVB caused thickening of the whole epidermis and stratum corneum in pigmented and albino hairless mice. Sterenborg et al. (1986) found similar changes after repeated exposures to mainly UVB in hairless albino mice.

C57Bl mice irradiated with UVB daily for 10 days had a four-fold increase in the number of epidermal melanocytes, with increased pigmentation and local thickening of the epidermis (Rosdahl, 1979). A gradual, delayed, three-fold increase in the number of melanocytes also occurred in shielded contralateral ears, without increased pigmentation or epidermal thickening.

Generally consistent observations have been reported on chronic changes (photo-ageing) in hairless mice (Bissett et al., 1987, 1989; Kligman, 1989). Bissett et al. (1987) described the progression of chronic UV damage to the skin in albino hairless Skh:Hr-1 mice irradiated with UVB or UVB plus UVA three times a week for 16 weeks, with a 17-week recovery period. UVB and a combination of UVA and UVB produced similar changes. An early increase in transepidermal water loss was seen, with a doubling of skin thickness and changes in the microtopography of the skin surface with visible skin wrinkling. Dose-dependent histological changes were seen, with thickening and hyperplasia of the epidermis. Dermal elastic fibres thickened and proliferated throughout the upper dermis, and there was a proliferation of fibroblasts, sebaceous cysts and dermal cysts in the upper dermis. By week 16, the skin was clearly elastotic, with thick, tangled masses of elastic fibres in the dermis. Use of a broad-spectrum sunscreen product with a claimed SPF (skin protector factor) of 15 retarded but did not completely prevent the effects of UVB and of UVB plus UVA radiation. Animals exposed to UVB and then allowed to recover for 12 weeks exhibited a zone of clearance of all abnormal elastin from the dermal–epidermal junction to mid-way down the dermis.

Animals exposed to UVA alone for 33 weeks with a recovery period of 18 weeks (Bissett et al., 1987) exhibited a different pattern of changes. Epidermal thickening occurred at a slower rate, there was no increase in water loss; and sagging rather than wrinkling of the skin occurred. There was a very gradual increase in cellularity; focal areas of collagen damage and absence of elastic fibres were seen; the size and number of dermal cysts increased; and there was only slight evidence of recovery after 18 weeks. UVA appeared to accelerate several
changes similar to those that occur with chronological ageing in mice. Using a dual grating monochromator, Bissett et al. (1989) examined the action spectra for these changes. Most were similar and occurred in the UVB waveband: wrinkling, glycosaminoglycan increase, collagen damage, elastosis, epidermal thickening, dermal cellularity and dermal inflammatory cell increase. In contrast, the spectrum for skin sagging was very broad, with a maximum near 340 nm. These results suggest that more than one chromophore is involved in UV-induced chronic skin changes.

High doses of UVA (cumulative dose, 3000 J/cm²) were reported to produce severe elastic fibre hyperplasia, but no large aggregates of elastosis or destruction of collagen, in female Skh-hr 1 albino mice (Kligman et al., 1985; Kligman, 1989). A dose of 13 000 J/cm² from a filtered (50% cutoff at about ≤ 345 nm) UVA source, however, produced only insignificant changes. Dose–response studies with another UVA source, filtered to remove all radiation below 340 nm, produced some elastin thickening at a total dose of 8000 J/cm² as well as increased epidermal proliferation and increased and enlarged dermal cysts (Kligman et al., 1987).

Kligman and Sayre (1991) found that the action spectrum for elastosis in albino hairless mice was similar to that for erythema, except that longer UVA wavelengths (≥ 330 nm) were less effective for elastosis.

The chronic effect of repeated UV irradiation was also investigated in naked albino Ng+/ mice using high total doses (≥ 20 000 J/cm²) from a predominantly UVA source (but containing some UVB) administered for 16 h daily for 8.5 months (Berger et al., 1980a). Dermal changes similar to those seen in human actinic elastosis were observed. There was endothelial swelling of dilated small capillary vessels and slight perivascular infiltration. Particularly in the upper dermis, collagen was replaced with an amorphous material that stained faintly with haematoxylin–eosin. Mast cells and a relatively increased number of spindle-shaped fibroblasts were found in the middle and lower dermis. Large aggregates of numerous tangled, thickened fibres with the staining properties of elastic tissue were seen. Electron microscopy showed that elastic fibres were increased in number and size and there was splitting of collagen fibres. Most small blood vessels were dilated, with multiple basal lamina. The elastic tissue changes showed no signs of regression 2.5 months after irradiation had been discontinued, although the epithelial changes regressed over this period.

Similar changes in elastic tissue (Berger et al., 1980b) were found after exposure to a filtered UVA source which contained no UVB, but no alteration of collagen was observed and inflammatory changes were absent. Electron microscopy showed changes similar to those observed in actinic elastosis.

In female, lightly pigmented, hairless Oslo/Bom mice, UVB alone produced moderate elastosis, UVB and UVA together produced a slightly reduced degree of elastosis, but UVB followed by large doses of UVA produced severe elastosis; UVA alone was reported to have no effect (Poulsen et al., 1984). In Skh:Hr 1 albino hairless mice, a combination of UVA and UVB had additive effects (Kligman et al., 1985).

(c) Comparison of humans and animals

No direct comparison has been reported of the optical properties of whole human and mouse epidermis; however, the available data suggest that the absorption/transmission
spectra are of a similar general shape but have marked quantitative differences. For example, a comparison of data on a graph of effects on human epidermis not previously exposed to UVR (Bruls et al., 1984a) with tabulated data on mouse epidermis not previously exposed (Sterenborg & van der Leun, 1988), generated in the same laboratory, showed that transmission in the mouse was two orders of magnitude greater in the UVC region and one order of magnitude greater in the UVB and UVA regions than in humans. In human and mouse epidermis, prior exposure to UVR resulted in marked decreases in UVR transmission. No study has been reported on mouse stratum corneum.

4.2.2 Immune response

Exposure to solar radiation and UVR can alter immune function in experimental animals and humans. This area of research is known as photoimmunology and has recently been reviewed (Daynes et al., 1983; Parrish, 1983; Parrish et al., 1983; Bergstresser, 1986; Roberts et al., 1986; Krutmann & Elmets, 1988; Morison, 1989).

(a) Humans

(i) Contact hypersensitivity (allergy)

Exposure of normal subjects to radiation in a tanning solarium which emitted mainly UVA but also UVB radiation reduced allergic reactions to 2,4-dinitrochlorobenzene (Hersey et al., 1983a). Halprin et al. (1981) and Nusbaum et al. (1983) found that UVB radiation partially suppressed the development of contact allergy to nitrogen mustard in patients with mycosis fungoides and psoriasis. Exposure to UVB was begun prior to treatment with mustard, and the field of exposure to the chemical was included in the area exposed to radiation, so that both a local and systemic effect may have been measured. In both studies, the proportion of patients sensitized to mustard gas was reduced by exposure to UVB radiation, and sensitization, when it did occur, was delayed. [The Working Group noted that the presence of diseases known to influence the immune system makes the findings difficult to interpret.]

Response to 2,4-dinitrochlorobenzene was diminished in sun-damaged skin in subjects previously sensitized to the allergen (Kocsard & Ofner, 1964; O’Dell et al., 1980). UVB-induced suppression of contact allergy to nickel and other allergens (e.g., cobalt) has also been reported (Mørk & Austad, 1982; Sjövall & Christensen, 1986).

Studies on the possible mechanism of suppression have focused mainly on the effects on antigen presentation in the skin. At low doses of UVB (≤ 15 mJ/cm²), Langerhans’ cells are the only epidermal cells to be altered morphologically (Aberer et al., 1981). Depletion of Langerhans’ cells after a few exposures to UVB radiation is transient (Tjernlund & Juhlin, 1982; Scheibner et al., 1986a); however, chronic exposure to sunlight appears to result in a sustained reduction, since fewer Langerhans’ cells are found in exposed than in unexposed skin of older adults but not of young adults (Gilchrest et al., 1982; Scheibner et al., 1983; Thiers et al., 1984; Czernielewski et al., 1988). Pigmentation does not seem to protect Langerhans’ cells, since exposure to UVB plus UVA radiation (simulating natural UVR) produced similar degrees of depletion of these cells in dark-skinned Australian aboriginals and in fair-skinned people of Celtic descent (Hollis & Scheibner, 1988); Langerhans’ cells...
were equally affected in fair-skinned and dark-skinned people after multiple exposures to sunlight (Scheibner et al., 1986b).

The antigen-presenting function of Langerhans' cells is also diminished after irradiation in vivo with UVB (Cooper et al., 1985; Räsänen et al., 1989). The function returns to the epidermis within 24 h, owing to the appearance of two cell populations that are distinct and different from Langerhans' cells (Cooper et al., 1986). Both populations have receptors for the monoclonal OKM5 antibody; one also has receptors for the OKM1 antibody and is possibly a dendritic cell from blood, while the other is OKM1− and is related to a subset of blood monocytes. These cells can activate T cells in the absence of exogenous antigen and lead to the generation of T-suppressor cells which can inhibit various immune responses. Baadsgaard et al. (1988) showed that epidermal cells from UVB-irradiated skin can stimulate suppressor/cytotoxic lymphocytes. This may occur via at least two pathways: activation of T-suppressor/inducer cells or induction of interleukin-2 production. These observations suggest that UV-induced immune suppression is more closely related to the appearance of OKM5+ cells in the epidermis than to the disappearance of Langerhans' cells.

Systemic suppression of contact allergy may also result from exposure to UVR. Granstein and Sauder (1987) exposed subjects to a MED of mainly UVB radiation and measured levels of serum interleukin-1 activity that peaked 1–4 h after exposure and returned to baseline by 8 h. This activity may originate from the skin, in which increased levels have been detected after UVB irradiation (Kupper et al., 1987; Oxholm et al., 1988; Räsänen et al., 1989).

A recent study (Yoshikawa et al., 1990) showed that suppression of UVB-induced contact allergy may be a risk factor for nonmelanocytic skin cancer. Approximately 60% of normal subjects were sensitized by application of 2,4-dinitrochlorobenzene to UVB-irradiated skin compared to 8% of patients with a history of skin cancer. Many skin cancer patients were also immunologically tolerant to this allergen; this was not observed in normal subjects.

Pigmentation does not protect against UV-induced immunosuppression, since it occurs in the same proportion of black and white people (Vermeer et al., 1991).

(ii) Lymphocytes

A single, whole-body exposure to UVB radiation which produced painful erythema produced a transient decrease in the proportion of circulating E rosette-forming cells and in the response of lymphocytes to a mitogen (Morison et al., 1979a). McGrath et al. (1986) found a decrease in the proportion of circulating suppressor cells following exposure to half the MED of UVB, although the total number of T lymphocytes was not altered. Exposure of normal subjects to sunlight daily for two weeks, however, produced different effects: The total proportion of T lymphocytes was diminished owing to a pronounced drop in the proportion of helper/inducer cells associated with an increase in the proportion of suppressor cells in the peripheral blood (Hersey et al., 1983b). Similar changes occurred after exposure of normal subjects to UVA plus UVB radiation (Hersey et al., 1983a). When UVB radiation was removed by a Mylar filter (Hersey et al., 1988) or a sunscreen (Hersey et al., 1987), most of the effect was removed. The numbers of circulating T cells and helper-T cells were significantly reduced by exposure of normal subjects to solar lamps containing UVA (with minimal UVB)
and to fluorescent tubes emitting mainly visible light, which contained small quantities of UVB, but the number of T-suppressor cells was only slightly reduced. These effects were considered to be due to the UVB radiation (Rivers et al., 1989).

(iii) Infectious diseases

Recurrent infections due to herpes simplex virus types 1 and 2 can be induced by exposure to UVB radiation (Wheeler, 1975; Spruance, 1985; Klein & Linnemann, 1986; Perna et al., 1987). Presumably, local alterations of immunity, associated with extensive UV-induced tissue damage, are responsible for this reactivation.

(iv) Photosensitive disease

An interaction between solar radiation and the immune system was first postulated on the basis of observations that the pathogenesis of several diseases is characterized by photosensitivity. Solar urticaria, photoallergy and lupus erythematosus are the main examples (for reviews, see Morison, 1983b,c; Morison & Kochevar, 1983).

(b) Experimental systems

(i) Contact hypersensitivity

The first report of UV-induced suppression of contact hypersensitivity was in guinea-pigs that received applications of a sensitizing chemical through UV-irradiated skin (Haniszko & Suskind, 1963). This effect has since been termed local suppression of contact hypersensitivity. Later, in studies of UV-induced tumour susceptibility in mice, it was found that UVR could also induce systemic suppression of contact hypersensitivity when the sensitizer is applied through unexposed skin only (Kripke et al., 1977). This occurred during chronic treatment of mice, was transient and appeared to be due to failure of an effector mechanism (efferent block) of the immune response (Jessup et al., 1978). These two phenomena, local and systemic suppression of contact hypersensitivity, are probably mediated by different mechanisms.

Local suppression of contact hypersensitivity: Pretreatment of mice with low doses of UVB radiation (100–700 J/m² fluorescent sunlamp radiation daily for four days) suppressed the development of contact hypersensitivity to sensitizing chemicals (e.g., 2,4-dinitrofluorobenzene) applied subsequently to irradiated skin (Toews et al., 1980; Elments et al., 1983). This effect was associated with generation of hapten-specific LyT-1+ T cells which suppress the induction phase of the immune response (Elments et al., 1983). The most effective wavelengths are < 300 nm (Elments et al., 1985). Local suppression of contact hypersensitivity by UVB radiation also occurs in hamsters (Streilein & Bergstresser, 1981).

Several hypotheses have been explored to explain the mechanism of local suppression. Multiple exposures to sunlight result in a striking reduction in the number of Langerhans' cells in guinea-pigs, as detected by ultrastructural examination (Fan et al., 1959). UV-induced alterations occur in Ia+ Langerhans' cells (Streilein et al., 1980; Perry & Greene, 1982; Gurish et al., 1983; Stingl et al., 1983), but alterations in other cells may be involved.

Thy-1+ dendritic epidermal cells (identified by antibodies to surface markers on lymphocytes), found in mouse but not reported in human skin, are bone marrow-derived lymphocytes which down-regulate contact hypersensitivity. They are not affected by low-
IARC MONOGRAPHS VOLUME 55
dose UVR, and hapten-conjugated Thy-1\(^+\) dendritic epidermal cells can induce tolerance on subcutaneous injection into the footpad or after intravenous injection (Welsh & Kripke, 1990). This finding is supported by the observations (Okamoto & Kripke, 1987) that (i) the draining lymph nodes of mice treated with low doses of UVR contained these hapten-conjugated cells after exposure to a contact sensitizer, (ii) injection of these cells into other syngeneic mice resulted in the generation of suppressor cells, and (iii) removal of these cells from the lymph node cells abolished the suppression.

I-J\(^+\), Thy-1\(^-\), Ia\(^-\) antigen-presenting cells, which are also resistant to low doses of UVB radiation and preferentially generate a suppressor cell pathway, may also be involved in local suppression (Granstein et al., 1984; Granstein, 1985; Granstein et al., 1987; Okamoto & Kripke, 1987).

Keratinocytes may also be involved through the production of epidermal cell-derived thymocyte-activating factor (ETAF), which is functionally and biochemically very similar to interleukin-1, a nonspecific helper factor necessary for activation of T cells by antigen. Interleukin-1 can reduce expression of contact hypersensitivity in mice (Robertson et al., 1987). Studies by several workers have suggested that exposure to UVR inhibits the production of ETAF (Sauder et al., 1983) or decreases its activity (Stingl et al., 1983). When antigen-presenting cells are exposed to UVR, their ability to activate T cells is markedly inhibited (Tomina
ta et al., 1983). UV irradiation of mice induces the release of a specific interleukin-1 inhibitor, keratinocyte-derived, EC-contra IL 1 (Schwarz et al., 1988). Other workers (Ansel et al., 1983; Gahring et al., 1984) have found increased production of ETAF.

Systemic suppression of contact hypersensitivity: Systemic suppression of contact hypersensitivity in mice requires a higher exposure dose (40–50 KJ/m\(^2\)) than local suppression (Kripke & Morison, 1986a). A dose of 8.2 kJ/m\(^2\) at 320 nm produced nearly 50% systemic suppression, and 100 kJ/m\(^2\) produced 80% suppression (Noonan et al., 1984). Like local suppression, systemic suppression is associated with the generation of suppressor Lyt-1\(^+\) T lymphocytes (Noonan et al., 1981a; Ullrich & Kripke, 1984). The pathways leading to the appearance of these lymphocytes are, however, probably different. Systemic suppression has also been induced in guinea-pigs (Morison & Kripke, 1984) and in the South American opossum, Monodelphis domestica (Applegate et al., 1989). Artificial sources of UVB radiation and sunlight, but not UVA, induce systemic suppression of contact allergy in mice and guinea-pigs (Morison et al., 1985).

Determination of an action spectrum for systemic suppression of contact hypersensitivity in mice revealed peak activity in the 260–270 nm region, which is consistent with a superficial location of the chromophore in the epidermis (De Fabo & Noonan, 1983; Noonan & De Fabo, 1985). Two candidate molecules, urocanic acid and DNA, have been suggested.

Several lines of evidence indicate that abnormalities in Langerhans’ cells are not involved in systemic suppression, in contrast to local suppression (Lynch et al., 1983; Morison et al., 1984; Noonan et al., 1984), and that a defect of antigen presentation is not an initial step (Kripke & McClendon, 1986). Soluble mediators are released from irradiated skin and may generate suppressor cells in a distant organ. Serum collected from UV-exposed mice and epidermal cells exposed to UVR in vitro contain factors that can induce systemic suppression.
(Schwarz et al., 1986). The situation is far from straightforward, however, since a recent study indicated that multiple suppressive factors, with different immunosuppressive properties, may be released by different wavelengths of UVR (Kim et al., 1990). Indomethacin blocks the development of suppression (Chung et al., 1986; Jun et al., 1988), indicating that prostaglandins may also be involved in the pathway.

Several properties of the suppressor cells have been defined: (i) they suppress primary proliferative responses but not a secondary response in vitro (this is consistent with the idea that they suppress induction of sensitization but not with the proposal that they elicit a response in a previously sensitized animal) (Ullrich, 1985); (ii) their action is limited to T-dependent antigens (Ullrich, 1987); and (iii) they can modulate other immunological pathways, such as formation of anti-hapten antibodies and cytotoxic-T lymphocytes (Ullrich et al., 1986a).

(ii) Delayed hypersensitivity to injected antigens

Systemic suppression of delayed hypersensitivity was induced by UVB irradiation of mice following injection of 2,4-dinitrochlorobenzene into the footpad (Jessup et al., 1978), of hapten-coupled spleen cells into the footpad (Greene et al., 1979) or the ear (Noonan et al., 1981b) or of erythrocytes and soluble protein antigens into the footpad (Ullrich et al., 1986b) and is associated with the generation of antigen-specific T lymphocytes. This suppression differs from the suppression of contact hypersensitivity to topically applied allergens because delayed hypersensitivity can be restored in UV-irradiated mice by injection of hapten-coupled spleen cells from normal mice (Noonan et al., 1981b; Kripke & Morison, 1985, 1986b). Furthermore, systemic injection of methylprednisolone before immunization prevented suppression of delayed hypersensitivity but had no effect on the suppression of contact hypersensitivity (Kripke & Morison, 1986b).

Systemic depression of splenic antigen-presenting cell function was demonstrated in UVB-exposed mice (Letvin et al., 1980a,b; Gurish et al., 1982). Two explanations have been advanced: a transient redistribution of antigen-presenting cells to peripheral lymphoid tissues in response to UV-induced inflammation (Gurish et al., 1982; Spangrude et al., 1983) or direct damage to blood monocytes or other precursors of splenic antigen-presenting cells as they circulate through the skin (Spangrude et al., 1983). The latter theory is supported by the observation that immunization with hapten-conjugated splenic antigen-presenting cells or epidermal cells exposed in vitro to UVR can induce hapten-specific T-suppressor cells (Fox et al., 1981; Sauder et al., 1981).

The role of one of the proposed chromophores, urocanic acid, has been explored. UV-irradiated urocanic acid (containing 74% cis-urocanic acid after 4 h) suppresses delayed hypersensitivity to HSV-1 when injected subcutaneously or applied to the skin of mice (Ross et al., 1986), and is thus similar to UVB radiation (Ross et al., 1987). In both instances, phenotypically similar suppressor cells were induced (Howie et al., 1986a; Ross et al., 1987). In addition, intravenous administration of cis-urocanic acid impairs antigen-presenting cell function in splenic dendritic cells. These observations suggest that trans-urocanic acid is the photoreceptor for UVB-induced systemic suppression of delayed hypersensitivity and that cis-urocanic acid acts as an immunomodulator (Noonan et al., 1988).
Most UV-induced tumours in mice are highly antigenic and are rejected upon transplantation into normal syngeneic recipients; however, they grow progressively in immunosuppressed recipients (Kripke, 1974). The specific immunological rejection of these transplanted tumours is mediated by cytolytic-T lymphocytes aided by natural killer and cytotoxic-T cells (Fortner & Kripke, 1977; Fortner & Lill, 1985; Streeter & Fortner, 1988a,b). Tumours grow in UV-irradiated recipients or primary hosts because T-suppressor lymphocytes induced by the exposure to UVR block the normal immunological surveillance system (Fisher & Kripke, 1977; Spellman et al., 1977; Fisher & Kripke, 1978; Spellman & Daynes, 1978). The function of these suppressor cells is specific in that, whereas they prevent development of UVR-induced tumours, they do not alter the growth of chemically induced tumours or skin allografts (Kripke & Fisher, 1976; Fisher & Kripke, 1978).

The phenotype of the suppressor cells is LyT1 + 2−, Ia− (antibodies to surface markers on lymphocytes), similar to that of other UV-induced suppressor cells (Ullrich & Kripke, 1984). These suppressor cells are important in the development of primary neoplasms. de Gruijl and van der Leun (1982b, 1983) found accelerated development of UVR-induced tumours in hairless mice that had been exposed previously to UVR at a separate site. Fisher and Kripke (1982) observed that, if suppressor cells were present from the time of commencement of exposure to UVR, the latent period for development of tumours was shortened and the tumour yield was increased. Thus, photocarcinogenesis in mice appears to involve at least two UVR-induced alterations: (i) an alteration in DNA leading to transformation of cells (see pp. 188–189) and (ii) a specific systemic immunological alteration that permits expression of the tumour (Fisher & Kripke, 1977).

Suppressor cells can be induced by doses of 40–50 kJ/m² of radiation from fluorescent sunlamps (see Fig. 9c, p. 64) (Kripke & Morison, 1986a), and susceptibility to transplanted tumours is evident long before the de-novo appearance of tumours (Fisher & Kripke, 1977). Suppressor cells can be induced by exposure to UVC (from low-pressure mercury discharge lamps) (Lill, 1983), UVB (De Fabo & Kripke, 1980), large doses of UVA (Morison, 1986) and sunlight (Morison & Kelley, 1985). Wiskemann et al. (1986) described an effect of neutral white fluorescent bulbs. [The Working Group considered that this effect may have been due to low levels of UVB from this source.]

The immune responses in graft rejection and graft-versus-host disease are complex and directed against class I antigens of the major histocompatibility complex which are expressed on all nucleated cells and class II Ia antigens which are expressed normally on lymphocytes and macrophages. Lindahl-Kiessling and Säfwenberg (1971) demonstrated that UV irradiation of stimulator cells could abrogate the proliferation of responder cells in a mixed-lymphocyte reaction. Subsequent studies (Alter et al., 1973; Bach et al., 1977) indicated that this effect was due to alteration of class II Ia antigens on the cells bearing them. These initial observations have been extended to various systems.

Pre-transplant, donor-specific blood transfusions have been used to reduce the need for post-transplant immunosuppression, with varying success. The basis for this effect is thought to be generation of donor-specific T-suppressor lymphocytes in the host. Lau et al. (1983)
found that exposure of the blood to UVB radiation prior to transfusion greatly enhanced this effect and permitted long-term survival of allografts of islets of Langerhans across a major histocompatibility barrier in rats. The effect was shown to be due to inactivation of lymphocytes by radiation, resulting in cancellation of a signal from Ia antigen-positive cells and permitting the generation of donor-specific T-suppressor cells. A similar effect was demonstrated with rat heart allografts (Balshi et al., 1985).

Deletion of Ia antigens or inactivation of cells bearing them may explain prolonged graft survival in other systems. Exposure of mouse tail skin to UVB radiation in vitro prolonged its survival as a graft when I-region differences only were present, but UVB had no effect in the case of complete H-2 differences (Claas et al., 1985). Similarly, mouse corneal allograft survival was prolonged by exposure to UVB radiation in vitro (Ray-Keil & Chandler, 1986). Prolonged survival as grafts of rat islets of Langerhans exposed to UVB radiation in vitro was apparently due to inactivation of dendritic cells bearing Ia antigens (Lau et al., 1984).

The model of UVR-induced systemic suppression of delayed hypersensitivity has been extended to transplantation studies, because of the considerable potential for manipulating the immune system in transplantation. Sensitization of mice with allogeneic spleen cells after a single exposure to UVB radiation suppressed the delayed hypersensitivity response to these cells and proliferation of lymphocytes from the irradiated mice in a mixed-lymphocyte reaction; these effects are due to generation of suppressor cells specific for donor antigens (Ullrich, 1986). Interestingly, exposure of the mice to radiation need not precede exposure to the antigen but can be delayed up to five days after first contact with the antigen, unlike other forms of suppression of delayed hypersensitivity (Magee et al., 1989a). Similar observations have been made in rats, but suppressor cells were not demonstrated in the spleen (Magee et al., 1989b). Subcutaneous injection of epidermal cells that have been exposed to UVB radiation in vitro can similarly cancel a delayed hypersensitivity response in mice; this effect is associated with prolongation of skin allograft survival (Tamaki & Iijima, 1989).

Graft-versus-host disease can also be reversed by UVR. Two rat models have been studied. Pretreatment of donor bone marrow with UVB radiation did not increase the failure of grafts, but it prevented graft-versus-host disease in most instances (Pepino et al., 1989). Pre-irradiation of rat skin with UVB prevented subsequent development of cutaneous graft-versus-host disease at the site of exposure (Glazier et al., 1984). In both of these studies, an alteration of Ia-bearing cells was postulated as the mechanism.

(v) Infectious diseases

Classic delayed hypersensitivity to complex protein antigens (correlated with resistance to a number of infections) can be suppressed by exposure to UVB radiation (Ullrich et al., 1986b).

Exposure of mice to low doses (1.3–3.4 kJ/m²) of UVB (less than a human MED) at the site of intradermal infection with herpes simplex type 2 virus increased the severity of the disease. Unirradiated mice developed only a single vesicle at the site of inoculation, whereas irradiated mice developed zosteriform lesions which healed slowly and, at the highest dose of radiation, were lethal. At doses that increased the severity of the infections, systemic suppression of delayed hypersensitivity to the virus due to generation of antigen-specific T-suppressor lymphocytes was observed (Yasumoto et al., 1987). In-vitro assays showed
UVB-induced impairment of antigen presentation, which may have been due to the presence of suppressor factors in the supernatant (Hayashi & Aurelian, 1986). Similar results were found in a model of herpes simplex virus type 1 infections in mice (Howie et al., 1986a,b,c; Otani & Mori, 1987). [The Working Group considered that these experiments have not demonstrated clearly that the effect of radiation on the induction of immunity is local, since the possibility of an indirect systemic effect has not been explored.]

Exposure to low doses of UVB radiation prevented the development of delayed hypersensitivity to the protozoan, leishmania, and reduced the number and severity of skin lesions when leishmania was inoculated at the site of exposure. Exposure to radiation did not, however, alter the viability of the organisms or the degree of their dissemination to distant sites—the spleen, lymph nodes and skin. Furthermore, the irradiated mice reacted to a second, distant inoculation as if it were a primary infection, presumably because they lacked the cell-mediated immunity that would be needed to control this second attack of the organism (Giannini, 1986).

Exposure of mice to UVB radiation also caused systemic suppression of delayed hypersensitivity to the yeast Candida albicans (Denkins et al., 1989), through two possible mechanisms: one mediated by suppressor cells (detected in the spleen) triggered by exposure to radiation prior to contact with the antigen and another which did not involve splenic suppressor cells and was triggered by exposure to radiation following exposure to the antigen.

(vi) Human lymphocytes in vitro

Lymphocytes are highly sensitive to low doses of UVR. UVC was approximately 10 times more effective than UVB and 10^5 times more effective than UVA on mononuclear peripheral blood cells in vitro (Morison et al., 1979b). Cripps et al. (1978) found that UVC was preferentially toxic to T lymphocytes, but that T and B lymphocytes were similarly susceptible to UVB. UVA did not appear to kill T or B cells. Exposure of mononuclear peripheral blood cells to UVB radiation inhibited both natural killer cell activity and the response of these cells to stimulation by a mitogen (phytohaemagglutinin) (Schacter et al., 1983), in the absence of any apparent change in viability. The effect on natural killer cell activity occurred selectively at the post-binding stage of lysis (Elmets et al., 1987) and could be virtually reversed by the addition of interleukin-2 and superoxide dismutase (Toda et al., 1986).

(c) Comparison of humans and animals

Firstly, most observations have been made in experimental systems and few studies have involved humans, and it can be only assumed that results of studies in mice can be extrapolated to humans. Furthermore, in no instance have parallel studies in an experimental system and in humans been performed to test this assumption. Secondly, while most investigations of photoimmunology have focused on the effects of 'UVB' radiation, in most studies this term refers to the emission spectrum of a fluorescent sunlamp (see Fig. 9c, p. 64) which contains both UVC and UVA, as well as UVB radiation, besides having little in common with the spectrum of sunlight. Fortunately, in the few studies in which the effects of fluorescent sunlamps and sunlight have been compared in experimental systems, similar alterations in immunity have been observed. Finally, with few exceptions, the effect of
exposure to UVR is to suppress immunity highly selectively, at least in experimental animals. Thus, in mice, certain cell-mediated immune responses are suppressed by UVR, whereas humoral immunity is largely unaffected. The selective nature of UVR-induced immunosuppression has not been established in humans, but no evidence exists to suggest that it does not apply. The importance of such selectivity is that it differs from the forms of immunosuppression seen most commonly in humans, namely viral and drug-induced suppression, which affect most functions of the immune system. Exposure of humans to UVR is unlikely to cause paralysis of immune function but probably selectively negates a few immune responses.

4.2.3 Eye

(a) Humans

(i) Anterior eye (cornea, conjunctiva)

The cornea absorbs UVC and UVB radiation (Sliney & Wolbarsht, 1980). Sunlight has been implicated as causing nodular band keratinopathies (spheroidal degeneration and climatic droplet keratopathy), pinguecula, pterygium, photokeratitis and photokeratoconjunctivitis (Wittenberg, 1986). Artificial sources of UVR, including welding arcs and germicidal lamps, cause photokeratoconjunctivitis and photokeratitis (Sliney, 1986). A study by Taylor et al. (1989) of the association between exposure to broad-band UVR and corneal disease in 838 fishermen in Chesapeake Bay, Maryland, USA, reported a significant association with pterygium and climatic droplet keratopathy but a weak association with pinguecula.

(ii) Lens

The lens absorbs radiation between 305 and 400 nm (Wittenberg, 1986). UVR produces substantial photodamage to both the structural proteins and key enzymes of the lens (for review, see Andley, 1987).

Taylor et al. (1988) studied the two major types of senile cataract (nuclear and cortical cataracts) in 838 Maryland fishermen for each of whom mean annual and cumulative UVB exposure had been assessed. High cumulative exposure to UVB and high annual exposure to UVB were both associated with increased risk of cortical cataract, but no association was seen with nuclear cataracts. The association between exposure to solar radiation and cataract is also supported by studies of cataract in northern India and China and in aborigines in Australia and by an analysis of data from the US National Health and Nutritional Examination Survey. These studies were reviewed by Wittenberg (1986).

It has been claimed that the presence of low levels of photosensitizing compounds in lens tissue may contribute to cataractogenesis (Lerman, 1988).

(iii) Posterior eye

The posterior eye is composed of the vitreous humour and the retina (Lerman, 1980). In the normal eye, solar radiation in the visible and near infrared regions (400–1400 nm) reaches these structures. Refraction of this waveband by the cornea and lens greatly increases the irradiance between the surface of the cornea and the retina (Sliney & Wolbarsht, 1980).

Permanent retinal damage was observed after direct viewing of the sun and viewing of solar eclipses and in aircraft spotters during the Second World War, but no epidemiological
study has associated retinal pathology with routine environmental exposure to sunlight (Wittenberg, 1986). The suggestion that senile macular degeneration is related to solar exposure was not supported by a large study of fishermen in Maryland (West et al., 1989).

(b) Experimental systems

(i) Anterior eye

Pitts et al. (1977) and Cullen (1980) studied the effects of exposure to UVR at 295 nm on the corneas of pigmented rabbit eyes. The threshold dose for corneal damage was 0.05 J/cm². Changes observed with a slit lamp biomicroscope included discharge, corneal debris, haziness, granular change, epithelial exfoliation, stromal opacities and stromal haze.

Applegate and Ley (1991) showed that UVR-induced corneal opacification and neovascularization of the cornea of the South American opossum M. domestica was due to DNA damage, as these effects could be delayed by subsequent illumination with photoreactivation light, which specifically monomerizes pyrimidine dimers.

(ii) Lens

Cataracts have been produced in pigmented rabbit eyes by exposure to UVB radiation (Pitts et al., 1977). Cataracts were produced in young albino mice 60 weeks after irradiation with a black light (predominantly UVA) (Zigman & Vaughan, 1974; Zigman et al., 1974). Albino mice developed anterior lens opacities after daily exposure for one to two months to a UVB plus UVA source (290–400 nm), but not after the source was filtered to remove radiation < 320 nm (Jose & Pitts, 1985).

(iii) Posterior eye

The effects of solar radiation on the posterior eye have been reviewed (Wittenberg, 1986; Andley, 1987). Irradiation of calf vitreous humour in vitro with visible radiation in the presence of photosensitizers resulted in partial liquefaction, suggesting that photogenerated active species of oxygen may damage the vitreous structure. In rabbits in vivo, however, little liquefaction was seen, suggesting a protective mechanism in the intact organ (Pitts et al., 1977).

Damage to the retina by exposure to sunlight may also be due to thermal effects at high irradiances or to photochemical effects at lower irradiances. In various animals, continuous exposure to sunlight produces a photochemical lesion involving the entire retina and affecting both rods and cones (Young, 1988). The photopigment, rhodopsin, is the chromophore for damage to the rods, while the three cone pigments are the chromophores for cones. In monkeys, blue-light damage caused by exposure to the 400–500 nm waveband affected the macular or paramacular region of the retinal pigment epithelium. The chromophore involved has been postulated to be melanin; active species of oxygen appear to act as mediators of the photochemistry (Lerman, 1980; Andley, 1987).

(c) Comparison of humans and animals

The limited data available indicate that the optical properties of the components of human and animal eye are broadly similar.
4.3 Photoproduct formation

4.3.1 DNA photoproducts

A multitude of photoproducts are formed in cellular DNA by solar UVR, many of which were first recognized after their induction by non-solar radiation at a wavelength of 254 nm. The ratio of the different photoproducts changes markedly with wavelength. A brief description of the photoproducts is given below, together with a note on the wavelength dependence of formation and susceptibility to repair. Substantial information on biological consequences is available only for cyclobutane-type pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts.

(a) Cyclobutane-type pyrimidine dimers

Shortly after the observation that thymine compounds irradiated with UVC in the frozen state rapidly lose their absorption (Beukers et al., 1958), a dimer of thymine was shown to be responsible for this effect, the two molecules being linked by a cyclobutane ring involving the 5 and 6 carbon atoms (Beukers & Berends, 1960; Wulff & Fraenkel, 1961). Continued irradiation leads to a wavelength-dependent equilibrium between dimer formation and dimer splitting to reform the monomer. Dimer formation is favoured when the ratio of dimer to monomer absorbance is relatively small (wavelengths > 260 nm), whereas monomerization is favoured at shorter wavelengths (around 240 nm), when the ratio is larger (Johns et al., 1962). Although several isomers of the cyclobutane-type thymidine dimer have been isolated from irradiated thymine oligomers, only the cis-syn isomer appears to predominate in biological systems (Ben-Hur & Ben-Ishai, 1968; Varghese & Patrick, 1969; Banerjee et al., 1988).

Cytosine-thymine (cy+-thy), thymine-thymine (thy-thy) and cytosine-cytosine (cyt-cyt) cyclobutane-type dimers are also formed in irradiated Escherichia coli DNA but deaminate to uracil-thymine (ura-thy) and uracil-uracil dimers after the acid hydrolysis usually used in chromatographic analysis (Setlow & Carrier, 1966). Cytosine moieties in dimers are also deaminated at a slower rate under physiological conditions that produce uracil residues (Fix, 1986), and recent evidence obtained in bacteria suggests that the rate may be more significant than was previously thought (Tessman & Kennedy, 1991). After treatment at 254 nm, thy-thy, cyt-thy and cyt-cyt appear in irradiated DNA at a ratio of 2:1:1 (Unrau et al., 1973), but this ratio changes quite markedly at longer wavelengths, e.g., to 5:4:1 at 265 nm (Setlow & Carrier, 1966). At 254 nm, the relative proportion of cyclobutane dimers was: 5'-thy-thy, 0.68; 5'-cyt-thy, 0.17; 5'-cyt-cyt, 0.08; and 5'-cyt-cyt, 0.07 (Kraemer et al., 1988). Ellison and Childs (1981) showed in E. coli that the ratio of cyt-thy:thy-thy increases from 0.75 at 254 nm to 1.5 at 313 nm then decreases to 0.8 at 320 nm, the longest wavelength tested. At 365 nm, the longest wavelength at which dimers have been detected, the ratio of thy-thy:ura-thy was 5–6:1 (Tyrrell, 1973). The proportion of cyt-cyt:thy-thy increased up to 300 nm, but cyt-cyt was undetectable at longer wavelengths (Ellison & Childs, 1981). On the basis of these data, the latter authors argued that the predominant dimer species formed in E. coli by exposure to sunlight are likely to be mixed dimers of cyt-thy rather than thy-thy (cyt-thy:thy-thy, 1:2:1). The ratio of formation of thy-thy:ura-thy dimers in bacterial DNA at 254 and 365 nm is approximately 7×10^5 nm
IARC MONOGRAPHS VOLUME 55

(Tyrrell, 1973). A similar ratio of total dimer product formation was found in cultured human skin fibroblasts irradiated at 254–265 nm (Enninga et al., 1986).

Fisher and Johns (1976) described the photochemistry and mechanism of formation of cyclobutane-type pyrimidine dimers in considerable detail. The mechanism of dimer formation in the UVB region almost certainly involves direct absorption, since the action spectrum for induction closely resembles that for the appropriate monomer for wavelengths as long as 313 nm (Ellison & Childs, 1981). The mechanism of formation by longer wavelengths (e.g., 365 nm) has not been clarified.

Cyclobutane-type dimers can be removed from the DNA of both prokaryotic and eukaryotic cells by the powerful excision repair mechanism that is deficient in cells from most sun-sensitive, skin cancer-prone patients with the hereditary disease, xeroderma pigmentosum (see Friedburg, 1984; Cleaver & Kraemer, 1989). Photoreactivation is specific for pyr→pyr (pyrimidine dimers) and monomerizes them in situ via a photolyase. Many microorganisms and higher eukaryotes contain a photolyase, but the proteins and light-activation spectra differ from species to species. The specificity of this process has proved a powerful tool in analysing the role of pyr→pyr in biological effects. For example, the potential photoreactivation of pyr→pyr has been studied in a set of experiments to demonstrate that the presence of UVC-induced pyr→pyr in fish can be a precarcinogenic lesion (Setlow, 1975). More recently, the small opossum, M. domestica, has been used by Ley and coworkers as an animal model in studies on the effects of UVR, predominantly UVB, mainly because cells of the skin of this animal, unlike that of the mouse, contain a photoreactivating enzyme(s). They showed that several biological effects, including decreased hair growth, erythema and tumour formation, were suppressed by exposure to longer wavelengths (photoreactivating light) (Ley & Applegate, 1989; Ley et al., 1991).

Considerable evidence, including the fact that photoreactivation prevents formation of the majority of mutations induced in bacteria by UVC, shows that the argument that pyr→pyr is a major premutagenic lesion is overwhelming (Doudney, 1976). Recognition that UV-induced mutagenesis in bacteria is an inducible process (see Witkin, 1976), however, complicates this argument, since, assuming that a structure involving pyr→pyr constitutes the inducing event, its elimination by photoreactivation would preclude error-prone repair at the site of any premutagenic lesion. When all inducible functions relevant to mutagenesis are turned on, the photoreversibility of UVC mutagenesis at several pyr→pyr sites disappears (Bridges & Brown, 1992); e.g., UV-induced mutagenesis to his+ in certain recA441 lexA51 bacteria was not photoreversible, indicating that pyrimidine dimers are not target lesions (Ruiz-Rubio et al., 1986). This suggests that non-photoreversible photoproducts (such as the pyrimidine–pyrimidone 6-4 photoproduct) are the principal premutagenic lesions at dithymine sequences and that cyclobutane-type thymine dimers are weakly mutagenic. This conclusion is consistent with the results of other studies with single-stranded vector DNA containing cyclobutane-type (6-4) thy→thy photoproducts at specific sites (Banerjee et al., 1988, 1990; LeClerc et al., 1991).

(b) Pyrimidine–pyrimidone (6-4) photoproducts

The most extensively studied non-dimer photoproduct is that formed from thymine and cytosine. Indirect evidence (Varghese & Patrick, 1969) suggests that this structure is the
in-vivo precursor of the compound 6-4'-[pyrimidin-2'-one]thymine (thy(6-4)pyo), originally found in acid hydrolysates of UV-irradiated DNA (Varghese & Wang, 1967; Wang & Varghese, 1967). Some years later, a type of UV-induced photoproduct, the pyrimidine nucleoside–cytidine lesion, was recognized in highly reiterated sequences of human DNA (Lippke et al., 1981); this is also probably a precursor of the thy(6-4)pyo product (Brash & Haseltine, 1982; Franklin et al., 1982). Using DNA sequencing analysis, UV photoproducts were more frequent at the 3' end of pyrimidine runs. Although the overall ratio of 6-4 photoproducts to dimers was 15% at certain 5'-thy+-cyt sequences, 6-4 photoproducts occurred at approximately the same frequency as that of the cyclobutane dimer (Kraemer et al., 1988).

Patrick (1977) originally reported that the action spectrum for (6-4) photoproduct formation resembles that for cyclobutane dimer formation, although the quantum yields are two and ten times lower than that of cyt+-thy and thy+-thy formation, respectively. Using irradiation at wavelengths as long as 334 nm, Chan et al. (1986) found that the action spectrum for induction of hot alkali sites (presumably the thy(6-4)pyo hydrolysis product) was also similar to that for pyr+-pyr formation. The action spectra for the induction of thymine dimers and (6-4) photoproducts were similar from 180 to 300 nm, whereas the action spectrum values for thymine dimer induction were about nine and 1.4 times higher or more than the values for (6-4) photoproduct induction below 160 nm and above 313 nm, respectively (Matsunaga et al., 1991).

Most xeroderma pigmentosum patients are defective in the excision of (6-4) photoproducts (Mitchell et al., 1985) and cyclobutane pyrimidine dimers (Cleaver & Kraemer, 1989). In addition, a group of patients with trichothiodystrophy (type 3) showed a marked reduction in the repair of (6-4) photoproducts (Broughton et al., 1990).

Glickman et al. (1986) demonstrated in E. coli that the cytosine–cytosine pyrimidine–pyrimidone (6-4) photoproduct is highly mutagenic; however, in other studies (e.g., Hutchinson et al., 1988), cyclobutane dimers were shown to be responsible for the majority of observed mutations. Assessment of the relative contributions to mutagenesis of all dipyrimidine photoproducts will require comprehensive studies in different biological systems with specifically designed sequences containing the appropriate photoproducts. Both pyrimidine dimers and pyrimidine–pyrimidone (6-4) photoproducts appear to be important in inducing cytotoxic and mutagenic lesions in human cells, although the relative contributions of each type remain controversial (Mitchell, 1988).

(c) Thymine glycols

A group of monomeric ring-saturated lesions of the 5,6-dihydroxydihydrothymine type (thymine glycols) have been detected by alkaline–acid degradation in the DNA of UV-irradiated human cells (Hariharan & Cerutti, 1976, 1977). Alkaline–acid degradation (see Cerutti, 1981) can be used to detect a class of structurally related lesions rather than a single lesion, with a yield that has been estimated to be approximately 20% of the total of ring-saturated thymine products (tsat).

Two aspects of this class of UV photoproduct are of particular interest: firstly, they are closely related to a class of ionizing radiation products and are believed to arise through a similar mechanism, i.e., indirectly via the action of hydroxyl radicals; secondly, their yield (relative to that of other UV-induced base damage) increases with exposures in the UVB
region. Measurements in HeLa cells showed that at 265 nm the ratio of \(\text{thy} \rightarrow \text{thy} \) to \(t_{\text{sat}} \) was 21, whereas at 313 nm the ratio decreased to 1.3 (Cerutti & Netrawali, 1979). The saturated thymine damage induced by UVA and UVB radiation may thus be due to the effects of active oxygen species generated via endogenous cell components. There is little evidence pertaining to the lethal or other biological consequences of such lesions in mammalian cells, although a glycosylase capable of repairing these lesions has been isolated from human cells (Higgins et al., 1987).

(d) Cytosine damage

The photochemical induction of pyrimidine hydrates has been reviewed (Fisher & Johns, 1976). Significant levels of hydrates are probably formed initially by UVR; however, their instability hampers measurement of their induction and removal in cells, and it has not been possible to establish a cause-and-effect relationship between photohydrate induction and biological effects in vivo. Using sequencing techniques, Gallagher et al. (1989) observed incision by human endonucleases of unidentified cytosine photoproducts that were neither cyclobutane-type nor (6-4) pyrimidine dimers. The frequency of these two photoproducts was two orders of magnitude lower than that of pyrimidine dimers, and the optimal wavelengths for induction were between 270 and 295 nm.

(e) Purine damage

Purine damage has been studied less frequently than pyrimidine damage, since the quantum yields are at least one order of magnitude lower; however, the development of sequencing techniques has made their detection easier (Kumar et al., 1991). Incisions (endonuclease V) are detected at unidentified purine or purine-pyrimidine moieties after broad-spectrum UV irradiation (Gallagher & Duker, 1986). Such damage appears to be induced maximally in the wavelength region of 260–300 nm (Gallagher & Duker, 1989). Although the overall yield is much lower than that of pyr\(\text{y} \rightarrow \text{pyr} \), similar yields occur at certain loci.

(f) DNA strand breaks

UVC radiation induces a lower proportion of single-strand breaks than of other photoproducts. In contrast, strand breaks are the commonest initial lesion induced by ionizing radiation. Although strand breaks form only a minority of lesions after irradiation at wavelengths up to 365 nm, they become increasingly important at longer wavelengths in the solar UV region (290–400 nm). At 313 nm, the ratio of DNA strand breakage to pyr\(\text{y} \rightarrow \text{pyr} \) induction in intact \(E. \text{coli} \) was 1:44 (Miguel & Tyrrell, 1983), whereas at 365 nm one strand break was formed for approximately every two pyrimidine dimers (Tyrrell et al., 1974). An action spectrum for break induction in \(B. \text{subtilis} \) DNA in vivo is available (Peak & Peak, 1982). More recently, an action spectrum for single-strand breaks in human skin cells has been determined which shows that irradiation in the presence of deuterium (which enhances singlet oxygen lifetime) increases the number of strand breaks observed at 365 and 405 nm. At wavelengths of 405 nm and longer, strand breaks and DNA-protein cross-links are the only forms of photochemical damage that have been determined (Peak et al., 1987). Between 10 and 20\% of the breaks induced at 365 nm are not frank breaks but rather alkali-labile
bonds which presumably include apurinic and apyrimidinic sites (Ley et al., 1978; Peak & Peak, 1982). The formation of breaks is strongly dependent upon oxygen at both 313 (Miguel & Tyrrell, 1983) and 365 nm (Tyrrell et al., 1974; Peak & Peak, 1982). Their formation in vitro at 365 nm is also quenched by free-radical scavengers. Strand breaks are repaired rapidly by a variety of cellular mechanisms in both prokaryotes and eukaryotes. The role of these lesions in the biological action of solar radiation is not well understood (Tyrrell et al., 1974).

(g) DNA–protein cross-links

The photochemical addition of nucleic acids to amino acids and proteins both in vitro and in vivo has been the subject of several reviews (Smith, 1976; Shetlar, 1980). Of the 22 common amino acids, 11 undergo photochemical addition to labelled uracil, the most reactive of which is cysteine, and several heterophotoproducts involving cysteine have been isolated and characterized.

Several prokaryotic and eukaryotic proteins have been cross-linked photochemically to DNA in vitro, including DNA polymerase, RNA polymerase, helix destabilizing protein and mixtures of proteins (Shetlar, 1980).

There is evidence that DNA–protein cross-links are formed in mammalian cells in significant yields by wavelengths longer than 345 nm (Bradley et al., 1979; Peak & Peak, 1991). Action spectra for the formation of DNA–protein cross-links in human cells have now been obtained. Two peaks of induction are observed: one at 254–290 nm, corresponding to the peak of DNA absorption, and a second at 405 nm, presumably resulting from a photosensitization reaction (Peak et al., 1985). [The Working Group noted that DNA–protein cross-links are likely to have important consequences for cells, but no data are available to allow evaluation of their effects in eukaryotic cells.]

4.3.2 Other chromophores and targets

In addition to DNA, many other cellular components absorb and/or are damaged by solar UVR and may influence the biological outcome of exposure. Both informational and transfer RNA molecules are susceptible to photomodification. Studies in insects indicate that damage to messenger RNA may be relevant to embryonic development, but the relevance of these results to mammalian systems is unclear (Kalthoff & Jäckle, 1982). Detailed results of bacterial studies on the photolability of certain components of transfer RNA (Jagger, 1981) are almost certainly not relevant to mammalian cells. Damage to proteins could lead to modification of the level of persistent primary damage in DNA, such that cellular DNA repair and antioxidant pathways are compromised (Tyrrell, 1991). There is also evidence that components of electron transport and oxidative phosphorylation, as well as membranes and membrane transport systems, can be damaged by solar wavelengths (Jagger, 1985). Non-DNA chromophores and targets become particularly relevant at longer wavelengths.

(a) Chromophores

Both nucleic acids and proteins weakly absorb UVA, and, although direct photochemical events may occur, it appears likely that the initial event in the biological effects of UVA radiation is absorption by a non-DNA chromophore which results in generation of
active oxygen species or energy transfer to the critical target molecules. As a consequence, at long UV wavelengths, the range of targets is extended to all critical molecules that are susceptible to active intermediates generated by chromophores.

Most of the knowledge on relevant chromophores has been obtained from in-vitro experiments or from studies in bacteria (Eisenstark, 1987). Indirect evidence indicates that porphyrins play a role in the inactivation of Propionibacterium acnes by UVA (Kjeldstad & Johnsson, 1986). It has also been shown that E. coli mutants defective in the synthesis of δ-aminolaevulinic acid are resistant to inactivation by UVA (Tuveson & Sammartano, 1986), which strongly suggests that porphyrin components of the respiratory chain act as endogenous photosensitizers. This conclusion is supported by the finding that strains that overproduce cytochrome were sensitive to broad-band UVA radiation (Sammartano & Tuveson, 1987). Porphyrins are also essential to human cellular metabolism, and overproduction of iron-free porphyrins in erythropoietic or hepatic tissues is the underlying cause of the photodestruction of the skin seen in the group of diseases known as porphyrias. Although direct evidence is lacking, free porphyrins and proteins containing haem (such as catalase, peroxidases and cytochromes) are also potentially important chromophores in skin cells from normal individuals. Many other cellular compounds which contain unsaturated bonds, such as flavins, steroids and quinones, should also be considered potential chromophores. Although normal levels of catalase (which contains haem) and alkyl hydroperoxide reductase (which contains FAD) would be expected to exert a protective role in bacteria (see below), overproduction of these enzymes is correlated with an increase in sensitivity to UVA radiation in bacteria (Kramer & Ames, 1987).

Porphyrins are an important class of photodynamic sensitizers which are believed to exert their biological action via the generation of singlet oxygen. Recent experiments have shown that deuterium oxide (which prolongs the lifetime of singlet oxygen) sensitizes human fibroblast cell populations to the lethal action of UVA radiation, while sodium azide (which destroys singlet oxygen) protects them (Tyrrell & Pidoux, 1989). Although this finding is consistent with the involvement of porphyrins in the lethality of UVA, other cellular compounds may also generate singlet oxygen. It is also important to consider active oxygen species that may be generated intracellularly. Not only can hydrogen peroxide be generated by UVA irradiation of tryptophan (McCormick et al., 1976), but both superoxide anion and hydrogen peroxide can be generated by photo-oxidation of NADH and NADPH (Czochralska et al., 1984; Cunningham et al., 1985).

The presence of chromophores (such as psoralens) in the diet may also influence susceptibility to damage, but this reaction is clearly subject to enormous individual variability. Accidental and deliberate application of chemical agents (such as sunscreens and drugs) to the skin may also introduce potentially damaging chromophores.

(b) Membranes

The lipid membrane is readily susceptible to attack by active oxygen intermediates. Many reports (e.g., Desai et al., 1964; Roshchupkin et al., 1975; Putvinsky et al., 1979; Azizova et al., 1980) have shown that UVR can induce peroxidation of membrane lipids. In-vitro studies with lecithin microvesicles have shown UVR-induced changes in the microviscosity of membrane bilayers (Dearden et al., 1981) which are correlated with the degree of unsatu-
ration of fatty acid chains (Dearden et al., 1985). UVC and UVA radiation and sunlight have been shown to cause lipid peroxidation in the liposomal membrane (Mandal & Chatterjee, 1980). Haem proteins such as cytochrome c and catalase are known to catalyse lipid peroxidation and peroxidative breakdown of membranes (e.g., Brown & Wüthrich, 1977; Goñi et al., 1985; Szebeni & Tollin, 1988). A dose-dependent, linear increase in lipid peroxidation of liposomal membranes was induced by UVA radiation, which was inhibited to a large extent by butylated hydroxytoluene, a nonspecific scavenger of lipid-free radicals. Since both sodium azide and L-histidine (quenchers of singlet oxygen) led to 40–50% inhibition of peroxidation, the authors suggested that singlet oxygen is involved in initiation of the reaction (Bose et al., 1989).

UVA irradiation of liposomes leads to lipid peroxidation in the absence of photosensitizer molecules, so that singlet oxygen may arise through direct stimulation of molecular oxygen (Bose et al., 1989). Biological membranes are, however, rich in endogenous photosensitizer molecules, such as those involved in electron transport, and these may contribute to the peroxidation of lipids observed in biological systems (see Jagger, 1985). Membrane damage has long been implicated in the lethality of UVA in bacteria (Hollaender, 1943) and almost certainly contributes to the sensitivity of UVA-treated populations plated on minimal medium—a phenomenon which is highly dependent on oxygen (Moss & Smith, 1981). Sensitivity to UVA has been related to levels of unsaturated fat in membranes (Klamen & Tuveson, 1982; Chamberlain & Moss, 1987). Furthermore, the presence of deuterium oxide enhances the levels of membrane damage, sensitivity to UVA and lipid peroxidation (Chamberlain & Moss, 1987), suggesting that singlet oxygen plays a role in all three processes. Leakage experiments have also been used to assess UVA-induced membrane damage in yeast: changes in permeability correlated well with lethality and were highly oxygen dependent (Ito & Ito, 1983). UVA irradiation of cultured human and mouse fibroblasts led to the release of arachidonate metabolites from the membrane in a dose-dependent fashion. The release was also dependent on the presence of both oxygen and calcium ion and may be related to the induction of cutaneous erythema, which is also oxygen dependent (Hanson & DeLeo, 1989). Studies of the effects of UVR on membrane transport have been undertaken in prokaryotes (Jagger, 1985), but no information was available on the effects of UVR on eukaryotic membrane transport.

4.4 Human excision repair disorders

4.4.1 Xeroderma pigmentosum

The commonest, most characteristic photoproducts produced in DNA by UVB and UVC radiation involve adjacent pyrimidines. Evidence summarized above argues strongly that these products give rise to a wide variety of alterations in DNA sequence and gene expression. Like many other types of DNA damage, these photoproducts may be excised, and the resulting gap in one strand can be resynthesized accurately using the undamaged strand as a template. How this is accomplished is best understood in the bacterium E. coli, in which a multiprotein complex including the products of the uvrA, B and C genes excises an oligonucleotide 12 or 13 bases in length containing the photoproduct. The resulting gap is filled by a DNA polymerase (usually III), and the final ligase link to the adjacent DNA is effected by
polynucleotide ligase (Bridges et al., 1987; Bridges, 1988; Bridges & Bates, 1990). Other gene products are involved in the process, and a more comprehensive discussion is given by Sancar and Rupp (1983). Bacteria that have defects in the uvrA or B genes cannot excise UV photoproducts and are 10–20 times more sensitive to killing and the induction of mutations by UVC. They are also more sensitive to UVB and (under certain conditions) UVA (Webb, 1977). It can be concluded that the function of excision repair is to minimize the deleterious consequences of DNA damage, such as the persistence of UV photoproducts.

A similar process takes place in humans. Although much less is known about the mechanism, many genes have been shown to be involved, and these are being cloned and the role of their products is being elucidated (Hoeijmakers & Bootsma, 1990; Bootsma & Hoeijmakers, 1991). Like bacteria, humans can also be deficient in aspects of excision repair. The prototypic example is the genetic disorder xeroderma pigmentosum, which is actually a complex of disorders comprising at least 10 different forms of DNA repair defect (nine excision defective complementation groups and one excision repair proficient variant group) (Kraemer et al., 1987; Cleaver & Kraemer, 1989). The sensitivity of fibroblasts and lymphocytes from excision-defective individuals with xeroderma pigmentosum to mutation and lethality by UVC is up to 10 times greater than that of cells from normal individuals (Arlett et al., 1992) and for UVR from a solar simulator (Patton et al., 1984). The pigmentary abnormalities are confined to sun-exposed portions of the skin.

The incidences of tumours of the skin, anterior eye and tip of the tongue in these individuals are much higher than those in unaffected populations (Kraemer et al., 1987), and the median age of patients at onset of skin cancers appears to be much younger than that of the general population. Multiple primary skin cancers are common, which arise predominantly on sunlight-exposed areas of the body (Kraemer et al., 1987); there is anecdotal information that they are largely prevented if protection against exposure to sunlight is afforded early in life (Kraemer & Slor, 1984). Studies of patients with excision-defective xeroderma pigmentosum provide the strongest evidence that sunlight-induced photoproducts can result (in the absence of repair) in the genesis of basal-cell carcinomas, squamous-cell carcinomas and melanomas and strongly support the contention that they can also do so in normal individuals in whom repair is more efficient (although probably never complete). The photoproducts that fail to be excised in xeroderma patients are known to be produced in human skin, not only by UVC (used in most laboratory experiments with cells) but also by UVB, particularly by wavelengths around 300 nm (Bridges, 1990; Athas et al., 1991). Action spectra show that the difference in the cytotoxic action of UVB on cultured cells from normal and xeroderma pigmentosum patients is similar to that of UVC, whereas the differences in the response to UVA are only slight (Keyse et al., 1983). The studies on xeroderma pigmentosum illustrate that DNA repair is a major defence of the human skin against the carcinogenic action of sunlight.

4.4.2 Trichothiodystrophy

The conclusions derived from studies of xeroderma pigmentosum have become more complex with the availability of information on two related excision disorders. Trichothiodystrophy is a rare disease in which patients generally have skin judged to be sun-sensitive by erythemal response but no indication of the pronounced freckling or elevated incidence of
early skin tumours associated with xeroderma pigmentosum (Bridges, 1990). In the majority of cases studied, trichothiodystrophy is associated with a deficiency in the ability to repair UV-induced damage in cellular DNA.

Three categories of response to UVR have been identified. In type 1, the response is completely normal, whereas type-2 cells are deficient in excision repair, with properties indistinguishable from those of xeroderma pigmentosum complementation group D. Type-3 cells survive normally after UV irradiation, and the rates of removal of cyclobutane pyrimidine dimer sites are also normal (Broughton et al., 1990). In xeroderma pigmentosum diploid fibroblast lines, catalase activity was decreased on average by a factor of five as compared to controls, while heterozygotic lines exhibited intermediary responses. All trichothiodystrophy lines tested were deficient in UV-induced lesion repair and exhibited a high level of catalase activity; however, molecular analysis of catalase transcription showed no difference between normal, xeroderma and trichothiodystrophy cell lines. UV irradiation induces five times more hydrogen peroxide production in xeroderma lines than in trichothiodystrophy lines and three times more than in controls. These striking differences indicate that UVR, directly or indirectly, together with defective oxidative metabolism may increase the initiation and/or the progression steps in patients with xeroderma pigmentosum to a greater degree than in people with trichothiodystrophy, which may partly explain the different tumoral phenotypes in the two diseases (Vuillaume et al., 1992).

Five patients with trichothiodystrophy type 2 appeared to be in one of the xeroderma pigmentosum complementation groups: Fibroblasts from these individuals were indistinguishable from xeroderma fibroblasts in the same complementation group and were equally sensitive to the lethal and mutagenic effects of UVC (Stefanini et al., 1986; Lehmann et al., 1988). Two other trichothiodystrophy patients (type 3) had cells markedly defective in the removal of (6-4) pyrimidine photoproducts but not cyclobutane-type dimers (Broughton et al., 1990).

4.4.3 Cockayne’s syndrome

A third sun-sensitive excision repair disorder is Cockayne’s syndrome. Patients with this condition have fibroblasts which undergo normal excision repair in the overall genome but which are defective in the excision of dimers from DNA strands undergoing active transcription (Mayne et al., 1988). Cockayne’s syndrome cells are sensitive to both killing and mutation induction by UVC (Arlett & Harcourt, 1983) and have reduced repair of cyclobutane dimers; they show, however, normal repair of non-dimer photoproducts in a UV-treated shuttle vector plasmid. Like patients with trichothiodystrophy, those with Cockayne’s syndrome do not have pronounced freckling or enhanced early incidence of skin cancers (Barrett et al., 1991).

4.4.4 Role of immunosuppression

If it is assumed that UV-induced DNA damage sustained by patients with trichothiodystrophy type 2 results in the same photo-induced mutations in their skin cells (including mutations associated with the initiation of cancer) as is seen in xeroderma pigmentosum patients of the same complementation group (D) (Bridges, 1990; Broughton et al., 1990), something other than unrepaired DNA damage and an elevated frequency of mutations must be needed to trigger initiated cells into clonal expansion and early tumours, as is seen in
xeroderma pigmentosum. The assumed latency of initiated cells in such trichothiodystrophy patients may be related to the latency seen in epidemiological studies of skin cancer in the normal population (see section 2).

The nature of the circumstances that allow initiated skin cells to develop into tumours in xeroderma pigmentosum patients, and perhaps later in life in other individuals, is unclear. Burnet (1971) first suggested that individuals with this disorder might be deficient in some immunosurveillance step. Bridges (1990) proposed that they were also hypersensitive to both the immunosuppressive and the mutagenic action of UVR, so that the elevated skin cancer rate in individuals with xeroderma pigmentosum would not accurately reflect the actual increase in mutation frequency in exposed skin but would exaggerate it greatly.

4.5 Genetic and related effects

Any cell that is UV-irradiated can be expected to sustain DNA damage. The nature of this damage is wavelength-dependent, and the major photoproducts of short-wavelength UV irradiation are various types of dipyrimidine photoproducts, while DNA strand breakage and DNA-protein cross-linkage occur relatively more frequently after irradiation with long-wavelength UVR. As the wavelength is increased above 290 nm, the efficiency of formation of pyrimidine dimers and other DNA photoproducts decreases greatly. This wavelength-dependency of response presents a fundamental problem for the quantitative interpretation of the genetic activities of different regions of the UV spectrum. In most experimental studies with UVA and UVB irradiation and, of course, simulated solar radiation, monochromatic radiation was not used. Also, the characteristics of the radiation emitted from the source are variable over time and from source to source. Because of these practical considerations, comparisons of the effects seen in different studies in terms of dose are commonly invalid: Photoproduct yield is dependent on the energy contributions from the different wavelengths within the spectrum used, but incident doses (fluences) are measured only as energy fluxes over the whole spectrum emitted from the source. The problem of dosimetry within experimental systems is compounded by the fact that absorbed dose is determined by the geometry of the system and the position of the target within it: absorption by one layer (e.g., the medium or a layer of cells) will affect the fluence incident upon the layer beneath. The fluence absorbed may thus differ substantially from the incident fluence of the system. For these reasons, it was considered inappropriate to compile quantitative genetic profiles as is customary in these monographs.

Given the generally significant responses in many different tests for the genetic activity of UVR in a wide range of organisms and cultured cells, the simple qualitative questions appear to have been answered in abundance. The main issues of outstanding interest are: identification of the types of damage induced by the various portions of the UV spectrum; the mechanisms by which damage is translated into mutation or other genetic changes; and the dose characteristics of these responses.

4.5.1 Humans

The portions of the body that receive most exposure to UVR are the skin, anterior eye and lip. Because dermal capillaries approach the skin surface, it can be anticipated that blood
will be exposed to the portion of UVR (see Kraemer & Weinstein, 1977; Morison et al., 1979a; Larcom et al., 1991) that penetrates the dermis. The biological consequences of this exposure are unknown.

DNA damage in skin cells has been studied using three methods that are sensitive enough to detect DNA damage after exposure to doses of UVR too low to induce erythema:

(i) use of antibodies specific for UV-altered DNA, followed by immunofluorescence. This method can be used with immunoperoxidase staining and a secondary antibody (Eggset et al., 1983, 1986) or without them (Tan & Stoughton, 1969);

(ii) autoradiography after tritiated thymidine incorporation (Epstein et al., 1969, 1970; Höligsmann et al., 1987; Wolf et al., 1988); and

(iii) treatment of extracted DNA with Micrococcus luteus cyclobutyl pyrimidine dimer site-specific endonuclease, followed by alkaline agarose gel electrophoresis of the single-stranded DNA fragmented at the dimer sites (Sutherland et al., 1980; D’Ambrosio et al., 1981; Gange et al., 1985; Freeman et al., 1986, 1987, 1989; Alcalay et al., 1990). This method suffers the disadvantage that damage cannot be localized to particular layers of the skin, but dimer yield can be calculated. Methods for the study of resolved genetic damage have not been pursued.

(a) Epidermis

(i) Broad-spectrum ultraviolet radiation, including solar simulation

Effects on DNA synthesis were demonstrated in human skin in vivo which had been exposed to three times the MED of UVR (< 320 nm; mercury arc lamp [Fig. 9a, p. 64]) and then injected intradermally with tritiated thymidine (8-41 × 10^6 ergs/cm^2 [8-41 kJ/m^2]) in the irradiated area immediately and at 0.25, 3, 5 and 24 h subsequently. S phase was suppressed in cells of the basal layer at 3-h and 5-h sampling times, but not at 24 h. Sparsely labelled cells (indicating DNA repair) occurred in greatly variable proportions from person to person in the basal, malpighian and granular layers at 0, 0.25, 3 and 5 h, but not at 24 h, indicating that repair was complete by 24 h (Epstein et al., 1969). DNA repair was also reduced in the skin cells of three patients with xeroderma pigmentosum in comparison to eight normal controls (Epstein et al., 1970).

Sutherland et al. (1980) demonstrated a dose-related response for the induction of pyrimidine dimers after exposure to a Westinghouse sun lamp (Fig. 9c, p. 64), with 50% energy < 320 nm, at 0, 970, 1940 and 3880 J/m^2. In one subject, 0.5 of the MED of sun-lamp exposure resulted in about 6 ± 0.6 dimers per 10^8 Da.

D’Ambrosio et al. (1981) reported that approximately 12.8 and 23.6 dimers per 10^8 Da were induced in skin DNA in vivo following irradiation with a mercury arc lamp (200-450 nm) at 150 and 300 J/m^2, respectively. Repair or removal of dimers was measured 0-24 h following exposure. About 50% of the dimers were lost 58 min after irradiation, and less than 10% remained at 24 h. In an experiment with patients with lupus erythematosus, D’Ambrosio et al. (1983) obtained results similar to those found in the skin of normal individuals.

Strickland et al. (1988) measured the induction of cyclobutane dithymidine photoproducts in human skin samples after exposure to simulated solar radiation. Tissue samples from three non-pigmented (white) individuals were exposed to 18 or 36 kJ/m^2 UVR (0.5–1 MED), and those from three constitutively pigmented (black) individuals were exposed to 72
and 144 kJ/m². Constitutively pigmented skin required doses of UVR two to four times higher than non-pigmented skin to produce roughly equivalent levels of thymine dimers. [The Working Group noted the small number of people studied.]

(ii) UVA radiation

Freeman et al. (1987) showed in two subjects that similar pyrimidine dimer yields were produced in skin by a broad-band UVA source (UVASUN 2000), by broadband UVA filtered to remove all light of wavelengths < 340 nm and by narrow-band radiation centred at 365 nm (xenon–mercury compact arc), indicating that UVA radiation and not stray shorter wavelength radiation was responsible. Dimer production was observed following exposures to \(5 \times 10^5\) J/m². Since exposure to a UVA-emitting tanning lamp results in a dose of about \(5 \times 10^5\) J/m², UVA exposure for cosmetic purposes could result in measurable levels of DNA damage.

(iii) UVB radiation

The efficiency of UVA- and UVB-induced tans in protecting against eryhema and the formation of dimers induced by UVB was studied in five subjects by Gange et al. (1985). The radiation sources were a UVASUN 2000 lamp (UVA; Fig. 8d, p. 61) and an FS36 Elder fluorescent sunlamp (UVB). UVB-induced tanning protected against eryhema produced by subsequent UVB exposure two to three times better than UVA-induced tanning; however, tanning with either UVA or UVB was associated with a similar reduction in yield of endonuclease-sensitive sites in epidermal DNA (about 50%).

Eggset et al. (1983) observed DNA damage in both epidermis and dermis following exposure to a Westinghouse FS-20 sunlamp (Fig. 9c, p. 64) at 0.5–2 MED (2 MED, 900 J/m²). The outer layers were more heavily damaged after small doses than the basal layer, which may be better protected by its deeper location and shielding by melanin. The authors claimed that DNA repair was well under way after 4–5 h and was apparently nearly complete at 24 h, as judged by immunofluorescence and immunoperoxidase staining. Repair was faster in the presence of visible light than when irradiated skin was shielded with thick black plastic. [The Working Group noted the absence of quantitative data.]

In a study of two volunteers (Eggset et al., 1986), tanning was shown to protect against DNA damage in skin (induced in a UVB solarium), but the conclusions were based solely on observations of immunofluorescence. [The Working Group noted the absence of quantitative data.]

Freeman et al. (1986) measured UVB-induced DNA damage in the skin of seven individuals with different sensitivities to UVB irradiation, as measured by the MED, with irradiation from an FS36 Elder fluorescent sunlamp (280–320 nm). The production of dimers was correlated inversely with the MED. The slopes of the dose–response curves for the most UVB-sensitive individual (MED, 240 J/m²) and for the least sensitive individual (MED, 1460 J/m²) were \(11.5 \times 10^{-4}\) and \(2.6 \times 10^{-4}\) dimer sites per 1000 bases per mJ/cm² [10 J/m²], respectively.

Hönigsmann et al. (1987) studied unscheduled DNA synthesis in epidermal cells in the skin of 25 male volunteers (four with skin type II and 21 with skin type III; see pp. 168–169) after exposure to doses of UVB of 0.06–6 MED, from a 6-kW xenon arc lamp (292–304 nm). The MED values ranged from 140 to 550 J/m². The dose–response curve showed a significant
increase in unscheduled DNA synthesis between 0.06 and 1 MED but no difference between 1 and 6 MED, suggesting a saturation of excision repair in vivo.

Freeman (1988) studied interindividual variability in 17 healthy volunteers in the repair of pyrimidine dimers induced following exposure to 0.25–1.5 MED from a Westinghouse FS-40 sunlamp (see Fig. 9c, p. 64). Removal of dimers was detected within 6 h of irradiation. The average half-time for removal of dimers was 11.0 ± 4.3 (SD) h (range, 5.5–21.1 h). [The Working Group noted that the spectra and doses used in this study were different from those used by D'Ambrosio et al. (1981). It is not clear if the interindividual variability is greater than the experimental error.]

Interindividual variability in the repair of UVB-induced pyrimidine dimers was also studied by Alcalay et al. (1990) in 22 patients aged 31–84 with at least one basal-cell carcinoma. The control group consisted of 19 cancer-free volunteers aged 25–61. Both groups were given one MED of radiation from a 150-W xenon arc solar UV-simulated lamp equipped with a 50-cm liquid light guide and a filter eliminating wavelengths below 295 nm. Dimers were measured immediately and after 6 h. The two groups were similar at time 0, but after 6 h, 22 ± 4% (range about 8–64) of the dimers were removed in the cancer group compared to 33 ± 4% (range about 4–64) in the control group. Of the cancer patients, 23% had repaired more than 30% of the DNA damage, compared to 53% of the control group. [The Working Group noted that it is not clear if the interindividual variability is greater than the experimental error.]

Wolf et al. (1988) observed measurable amounts of unscheduled DNA synthesis in the skin of 23 volunteers exposed to 0.5 MED UVB irradiation from a high-pressure mercury lamp [spectral emission not given]. Administration of carotenoids (to reduce light sensitivity in patients with erythropoietic protoporphyria) at a dose of 150 mg per day for 30 days did not significantly alter the amount of unscheduled DNA synthesis (6 ± 1.2 grains/cell before and 8 ± 2 grains/cell after carotenoid treatment; seven subjects). The same investigation showed no significant protection by carotenoids against UVA-, UVB- or PUVA-induced erythema, on the basis of pre- and post-carotenoid MED or minimal phototoxic dose.

In 30 volunteers, it was demonstrated that the action spectrum for the frequency of pyrimidine dimer formation in human skin DNA for a given fluence (incident dose) has its maximum near 300 nm and decreases sharply on either side of this wavelength (Fig. 12). The decrease at < 300 nm is probably due to absorption in the upper layers of skin. These data were used to estimate that, at a solar angle of 40°, a reduction in the thickness of the stratospheric ozone layer from 0.32 cm down to 0.16 cm would be expected to result in a 2.5-fold increase in dimer formation (Freeman et al., 1989).

A dose–response for the formation of thymine dimers in epidermal cells isolated from human skin irradiated with UVB in vitro was determined by Roza et al. (1988) using a monoclonal antibody.

(iv) UVC radiation

Exposure of human skin, from which the stratum corneum had been removed, to either a germicidal (UVC) or a Hanovia hot quartz lamp in vivo resulted in DNA damage demonstrable by immunofluorescence (Tan & Stoughton, 1969). When the stratum corneum was intact, DNA damage was detected only after exposure to the germicidal lamp. [The
Fig. 12. Action spectrum for pyrimidine dimer formation in human skin (•) and solar spectra at the surface of the Earth for stratospheric ozone levels of 0.32 cm (dotted line) and 0.16 cm (solid line). Each point in the action spectrum represents the slope of the dose–response line (dimer yields at three exposures) for one volunteer at one wavelength, obtained from triplicate independent determinations. Thirty points occur at 302 nm, although some points overlie other values; five points occur at each other wavelength: points at 290 and 334 nm are circled to indicate that identical dimer yields were recorded for two volunteers. ph, photon; ESS, endonuclease-sensitive site

From Freeman et al. (1989)

Working Group noted that more sensitive analytical techniques for DNA damage are now available.

(b) Lymphocytes

(i) Broad-spectrum ultraviolet radiation

In addition to cells of the skin, white blood cells are also subject to exposure to UVB and UVA, partly because some are temporarily resident in the skin and partly because it has been estimated that the equivalent of the total blood volume circulates through the dermal capillaries approximately every 11 min (Kraemer & Weinstein, 1977). Detecting effects, e.g., on lymphocytes, is likely to be extremely difficult owing to the fact that they are continually moving between the blood and other tissues; indeed, 90% of the lymphocyte population at any given time is resident outside the blood. Thus, the concentration in the blood of any
lymphocytes irradiated while passing through the skin may fall substantially over time after irradiation ends as they are diluted in the whole body lymphocyte pool. Extravascular lymphocytes resident in the skin may also receive higher doses of UVR. Nevertheless, studies have been reported of genetic or related effects on lymphocytes sampled from peripheral blood.

Larcom et al. (1991) examined the capacity for DNA synthesis of lymphocytes from eight subjects exposed in two commercial tanning salons. Blood was taken immediately before tanning and again 24 h after tanning. System I used a sunlamp with a UVB:UVR ratio of 0.02% for 280–300 nm and 1.4% for 300–315 nm; the output of system II (Solana Voltarc lamp) was not indicated. There was a 24–84% (average, 53%) decrease in phytohaemagglutinin-induced DNA synthesis with system I and a 8–58% (average, 30%) decrease with system II.

(ii) UVA radiation

Seven of 13 psoriasis patients receiving oral 8-methoxypsoralen and high-intensity, long-wave UVA radiation had reduced leukocyte DNA synthesis; this did not occur in any of 10 controls (Kraemer & Weinstein, 1977). These results indicate that UVA reduces the incorporation of tritiated thymidine in lymphocytes circulating through the skin.

(iii) UVB radiation

In normal, fair-skinned subjects given whole-body exposure to 1.5–3 × MED doses of UVB from a sunlamp (280–380 nm), a dose-dependent decrease was seen in the incorporation of tritiated thymidine into DNA following stimulation by photohaemagglutinin; the proportion of circulating lymphocytes was decreased and the proportion of null cells was increased (Morison et al., 1979a).

These studies indicate that leukocytes should be included in any inventory of human cells potentially exposed to solar radiation or artificial UVR.

4.5.2 Experimental systems [see Tables 32–35, in which exposures are separated according to type of UVR]

(a) DNA damage

Inhibition of DNA synthesis has been induced in hairless albino mouse epidermis at wavelengths of 260–320 nm, with a maximal effect at 290 nm. Inhibition was not detected at 335 nm (Kaidbey, 1988). The action spectrum was similar to that for formation of cyclobutane-type pyrimidine dimers (Cooke & Johnson, 1978; Ley et al., 1983) and pyrimidine–pyrimidone (6-4) photoproducbs in mouse skin (Olsen et al., 1989). Pyrimidine dimers (measured as endonuclease-sensitive sites) have been measured in the corneal DNA of the marsupial, M. domestica, following exposure to a sunlamp (280–400 nm) (Ley et al., 1988).

While DNA is the main photochromophore for UVC, there is evidence that active oxygen intermediates are involved in the production of DNA damage by UVA (Tyrrell, 1991). The production of several types of photolesions is oxygen dependent (Tyrrell, 1984, 1991). In addition, the irradiation lethality of both cultured bacterial (Webb, 1977) and mammalian (Danpure & Tyrrell, 1976) cells is dependent on the presence of oxygen; this observation was later linked with the production of singlet oxygen (Tyrrell & Pidoux, 1989). It has also been
observed that irradiation of cultured human skin cells with UVB (302 nm, 313 nm), UVA (334 nm, 365 nm) and visible (405 nm) radiation is strongly enhanced in glutathione-depleted cells (Tyrrell & Pidoux, 1986, 1988). This apparent protection by glutathione appears to be due to its radical scavanging properties at the stated wavelength but may be due to induction of a more specific pathway (such as its essential role as a hydrogen donor for glutathione peroxidase) at longer wavelengths. Francis and Giannelli (1991) found that the abnormally high yield of single-stranded DNA breaks produced by UVA in six UVA-sensitive human fibroblasts (three from actinic reticuloid patients, two from sisters with familial actinic keratoses and internal malignancies and one from a patient with an abnormally high incidence of basal-cell carcinomas) could be reduced if sensitive cells were co-cultivated with normal fibroblasts or with radical scavengers. They suggested that the UVA-sensitive cells had deficits of small-molecular-weight scavengers of active oxygen species and that intercellular cooperation allows the transfer of these substances from resistant to sensitive cells. The presence of non-DNA chromophores that generate active oxygen species can also occur with UVC. Melanin, normally regarded as a solar screen, has also been associated with the formation of oxidative DNA damage, such as thymine glycols in mouse cells that vary in melanin content (Huselton & Hill, 1990). A slight increase in pyrimidine dimer yield was seen in human melanocytes as compared to keratinocytes following exposure to UVR at 254, 297, 302 and 312 nm but was significant only at 297 nm (Schothorst et al., 1991).

(b) Mutagenicity

Numerous reports show that sunlight or solar-simulated radiation induces mutations in bacteria, plants, Chinese hamster ovary (CHO) and lung (V79) cells, mouse lymphoma cells and human skin fibroblasts.

Studies in bacteria exposed to radiation throughout the solar UV spectrum (reviewed by Webb, 1977) demonstrate mutagenic activity unambiguously. The effects of sunlight on mammalian cells have been reviewed (Kantor, 1985). UVA (320–400 nm) is mutagenic to yeast and cultured mammalian cells, UVB (290–320 nm) to bacteria and cultured mammalian cells and UVC (200–290 nm) to bacteria, fungi, plants, cultured mammalian cells, including CHO and V79 cells, and human lymphoblasts, lymphocytes and fibroblasts. Since wavelengths in the UVC range do not reach the surface of the Earth, they are of no significance as a source of damage in natural sunlight.

A characteristic of all of these studies is that UVA appears to be relatively inefficient as a mutagen in comparison with UVB and UVC when activity is expressed per unit of energy fluence, but not necessarily so when expressed per DNA photoproduct (see Tyrrell, 1984). Webb (1977) compiled action spectra for the introduction of mutations in bacteria, as did Coohill et al. (1987) for mutagenesis in human epithelial cells. In both Salmonella and human cells, wavelengths > 320 nm were at least 10^3 times less effective than those between 270 and 290 nm.

A comparison of the mutagenicity of various UV-containing light sources towards a set of S. typhimurium strains was reported by De Flora et al. (1990). The approach did not involve measurement of cytotoxicity, and mutagenicity was compared at roughly equitoxic doses rather than as a function of fluence. Halogen lamps were as mutagenic as 254-nm UVC and more mutagenic than fluorescent sunlamps or sunlight. The mutagenicity of halogen lamps
was attributed to their UVC component, in contrast to sunlight which produced mutagenic effects over a wide UV spectrum. The mutagenicity of halogen lamps, fluorescent lamps and sunlight was partially inhibited by catalase, suggesting that peroxides may be involved in this in-vitro system. It is also relevant that pretreatment of *E. coli* with hydrogen peroxide results in an increase in both UVA resistance and hydrogen peroxide scavenging ability (Moss, S.H., quoted by Tyrrell, 1985; Sammartano & Tuveson, 1985; Tyrrell, 1985).

Further evidence for the complexity of responses to the UVR region comes from Schothorst *et al.* (1987b), who examined the mutational response of human skin fibroblasts to 12 lamps differing widely in their emission characteristics. Surprisingly, they found that, whatever the light source, mutation induction per MED was similar with UVC, UVB and solar radiation; with UVA (only one data point), mutation induction per MED was much greater. The authors emphasized that these conclusions hold only if it is valid to calculate the mutagenicity of a light source by adding the effects of the contributing wavelengths; however, the data of Coohill *et al.* (1987) argue against this assumption.

The inevitable consequence of the absorption spectrum maximum of DNA is that there is a considerable body of data on mutagenicity toward microorganisms of UVC, which is usually delivered by radiation from germicidal lamps with more than 90% of their output at 254 nm. The types of mutations that are induced by UVC and the mechanisms of their induction have been reviewed (Witkin, 1976; Hall & Mount, 1981; Walker, 1984; Hutchinson & Wood, 1986; Bridges *et al.*, 1987; Hutchinson, 1987). Specific cellular proteins, including the products of recA and umuC genes, together with a cleaved derivative of the umuD gene product, must be present for mutations to result from most types of DNA damage. These proteins are themselves part of an inducible response to DNA damage, and their intracellular level increases dramatically when photoproducts or other lesions are detected in DNA. It is not yet clear to what extent inducible systems are involved in UV mutagenesis in higher eukaryotes.

Current evidence suggests that all photoproducts are likely to be potentially mutagenic, although with greatly different specificities and potencies. The major UV photoproducts, cyclobutane-type thymine–thymine dimers, are, for example, relatively weakly mutagenic (Banerjee *et al.*, 1988, 1990), owing in part to the propensity of polymerases to insert adenine when the template instruction is unclear or missing (Sagher & Strauss, 1983; Schaaper *et al.*, 1983; Kunkel, 1984). The relatively minor (6-4) thymine–thymine photoproduct is, in contrast, highly mutagenic, the dominant mutation being a 3′ T→C transition (LeClerc *et al.*, 1991). By far the most frequent UVC-induced change in human cells is the transition from G:C to A:T (Bredberg *et al.*, 1986; Seetharam *et al.*, 1987; Hsia *et al.*, 1989; Dorado *et al.*, 1991). A number of investigators have noted the production of tandem transitions from G:C,G:C to A:T,A:T. Although this is not the most frequent change, it seems to be particularly characteristic for UVC mutagenesis in human cells. The frequency of mutation per lethal event at the *hprt* locus (which detects a broad spectrum of mutations) is approximately the same at 254 nm and 313 nm in human lymphoblastoid cells; however, the mutation frequency per lethal event at the *Na+K+* ATPase locus (which detects point mutations) is considerably higher at 313 nm. This finding may indicate a difference in types of pre-mutagenic lesions and/or rates of mutation between the two wavelength regions (Tyrrell, 1984).
Two bacterial studies provide positive evidence for the mutagenic activity of fluorescent lamps. De Flora et al. (1990) employed Sylvania 36 W cool white tubes with E. coli and Salmonella strains. [The Working Group had difficulty in evaluating these data because they are presented in a highly transformed format.] Hartman et al. (1991) used General Electric F15T8CW lamps; a lowest effective dose of 5500 J/m² can be estimated from the results with Salmonella tester strains. Filters that block wavelengths < 370 nm effectively eliminated mutagenesis, while radical scavengers such as superoxide dismutase or catalase stimulated mutagenesis.

Hsie et al. (1977) irradiated the hpnt CHO system with Westinghouse white light F40CW lamps. The minimal effective dose was 3.96×10^6 J/m². Putting lids on the petri dishes reduced mutant frequency by 30%. [The Working Group noted that the results were based on a single dose point in a single experiment.] Jacobson et al. (1978) exposed mouse lymphoma L5178Y tk⁺⁻ cells to Sylvania F18T8 cool white lamps. The estimated lowest effective dose was 2×10^4 J/m². [The Working Group noted that the selective agent used, BUdR, is regarded as inefficient and has been superseded by trichlorothymidine, so these results require confirmation.]

(c) Chromosomal effects

Sunlamps have been shown to produce sister chromatid exchange in amphibian cells (Chao & Rosenstein, 1985) and in human fibroblasts (Bielfeld et al., 1989; Roser et al., 1989). Fibroblasts from a panel of cutaneous malignant melanoma patients (Roser et al., 1989) and heterozygotes of xeroderma pigmentosum (Bielfeld et al., 1989) were more susceptible to the induction of both sister chromatid exchange and micronuclei than those from normal donors. Micronuclei were also induced in mouse splenocytes by exposure to sunlamps in vitro (Dreosti et al., 1990).

A study with CHO cells provided evidence for a dose-related increase in the induction of sister chromatid exchange by UVA, but the increased induction of chromosomal aberrations showed no dose–response relationship (Lundgren & Wulf, 1988).

UVB induced sister chromatid exchange in CHO cells (Rasmussen et al., 1989) and chromosomal aberrations in frog ICR 2A cells (Rosenstein & Rosenstein, 1985). In the latter study, photoreactivation reduced the number of chromosomal aberrations more effectively at 265, 289 and 302 than at 313 nm, suggesting that non-cyclobutane dimer photoproducts are more important primary lesions at the higher wavelength.

For UVC, more extensive data are available. Sister chromatid exchange was induced in Chinese hamster V79 (Nishi et al., 1984) and CHO (Rasmussen et al., 1989) cells. Chromatid exchange was also recorded in cultured fetal fibroblasts from New Zealand black mice, which proved to be more sensitive than BALB/c cells (Reddy et al., 1978). The induction of chromosomal aberrations in Chinese hamster cells has been reported on a number of occasions (Chu, 1965a,b; Trosko & Brewen, 1967; Bender et al., 1973; Griggs & Bender, 1973; Ikushima & Wolff, 1974).

Exposure of frog ICR 2A cells to 254 or 265 nm radiation induced both sister chromatid exchange (Chao & Rosenstein, 1985) and chromosomal aberrations, while photoreactivating light significantly reduced the frequency of chromosomal aberrations, which implies a role for pyrimidine dimers in their genesis (Rosenstein & Rosenstein, 1985). Chromosomal
aberrations were also seen with *Xenopus* cell cultures (Griggs & Bender, 1973). The frequencies of sister chromatid exchange and chromosomal aberrations induced by UVC were reduced by photoreactivating light in chicken embryo fibroblasts (Natarajan et al., 1980), lending further support to the concept that the cyclobutane pyrimidine dimer represents a primary lesion in these two end-points.

Parshad et al. (1980a) reported the induction of chromosomal damage in human IMR-90 fibroblasts following treatment with 4.6 W/m² over 20 h (331 kJ/m²) from F15T8-CW tubes. Shielding and radical scavengers reduced the level of damage.

Extensive data are available on the induction of sister chromatid exchange in fibroblasts from patients with Bloom’s syndrome (Kreplinsky et al., 1980), xeroderma pigmentosum (De Weerd-Kastelein et al., 1977; Fujiwara et al., 1981) or Cockayne’s syndrome (Marshall et al., 1980; Fujiwara et al., 1981), as well as from normal individuals. In comparison with normal individuals, more sister chromatid exchanges were induced per lethal lesion in fibroblasts from excision-competent Bloom’s syndrome (Kurihara et al., 1987) and Cockayne’s syndrome (Marshall et al., 1980) patients. No such increase in sister chromatid exchange was seen in fibroblasts from excision-defective xeroderma pigmentosum patients or from an individual defective in the ligation step of repair (Henderson et al., 1985).

The induction of sister chromatid exchange by UV irradiation has also been studied in human lymphocytes, with conflicting results. In one study, they were reported to be less responsive than either human fibroblasts or CHO cells (Perticone et al., 1986), while another report, in which chromosomal aberrations were also studied, suggested that lymphocytes were more sensitive than fibroblasts in their response at both end-points (Murthy et al., 1982). These results may have implications for the interpretation of the effect of UV on the immune system.

Fibroblasts from xeroderma pigmentosum patients are more sensitive to the induction of chromosomal aberrations than cells from normal donors (Parrington et al., 1971; Parrington, 1972; Marshall & Scott, 1976). Seguin et al. (1988) showed that lymphoblastoid cells from five Cockayne’s syndrome patients were similarly hypersensitive to UVC-induced chromosomal aberrations. The induction of micronuclei in two normal and three Bloom’s syndrome-derived fibroblast cell cultures was reported by Krepinsky et al. (1980). One culture from a Bloom’s syndrome patient, GM1492, proved to be exceptionally sensitive to the induction of micronuclei; the other two were indistinguishable from normal cells. This result emphasizes the potential importance of heterogeneity in response among patients with rare genetic syndromes.

\(d\) Transformation

Morphological transformation of mammalian cells has been induced by solar radiation, unshielded fluorescent tubes, solar simulators, UVA, UVB and, most extensively, UVC. There is weak evidence (Baturay et al., 1985) for the induction of transformation by predominantly UVA radiation (20T12BLB bulbs) in BALB/c 3T3 cells. In the same report, UVA was shown to have promoting activity following initiation with β-propiolactone. The most effective wavelength for Syrian hamster embryo cells (Doniger et al., 1981) and human embryonic fibroblasts (Sutherland et al., 1981) appears to be in the UVC range at about 265 nm. Transformation of human cells can be enhanced by delivering the dose on a number of
separate occasions (Sutherland et al., 1988). It has also been reported that excision repair-defective xeroderma pigmentosum cells can be transformed to the anchorage-independent phenotype at lower doses than those required for cells from normal individuals (Maher et al., 1982). Fisher and Cifone (1981) showed enhanced metastatic potential of mouse fibrosarcoma cells. Plasmids containing the human N-ras gene which were irradiated with UVR (254 nm) in vitro acquired the ability to transform cultured rat-2 cells after transfection; photoreactivation of irradiated plasmids eliminated their transforming ability (van der Lubbe et al., 1988). In another study, UVB irradiation activated the human Ha-ras gene on a plasmid in a transformation assay with mouse NIH-3T3 cells (Pierceall & Ananthaswamy (1991).

An investigation of chromosomal breaks and malignant transformation in embryonic mouse cells (Sanford et al., 1979; Parshad et al., 1980b) revealed that exposure of cultured cells to fluorescent lamps induced malignant transformation, as measured by tumour formation following implantation into syngeneic hosts. The potential importance of active oxygen species was revealed by experiments in which the partial pressure of oxygen in cultures was increased, resulting in increased malignant transformation and correlated chromosomal breakage.

Kennedy et al. (1980) reported induction of transformation in C3H 10T½ mouse embryonic cell cultures by light from General Electric F18T8 lamps. The lowest effective dose was estimated at 2×10^5 J/m², and use of petri dish lids was effective in reducing transformation.

(e) Effects on cellular and viral gene expression

A number of cellular oncogenes and other genes involved in the regulation of growth are implicated in the process of carcinogenesis, as they are subject to both gene mutation and alteration in expression due to chromosomal rearrangement. Many of these genes also show transient alterations in expression following DNA damage, which has led to the suspicion that such transient changes are involved, either directly or indirectly, in the carcinogenic process.

UVC radiation was found to increase transiently the expression of various cellular genes, including those that code for collagenase (Stein et al., 1989), the fos protein (Hollander & Fornace, 1989; Stein et al., 1989), the jun protein (Ronai et al., 1990), metallothioneins I and II (Fornace et al., 1988) and human plasminogen activator (Miskin & Ben-Ishai, 1981). UVA radiation enhanced expression of the genes that code for the fos protein (Hollander & Fornace, 1989), and UVB radiation increased the level of ornithine decarboxylase (Verma et al., 1979). Different levels of cytotoxicity were seen in these experiments. UVA radiation at doses that inactivate a small fraction of the fibroblast cell population induced expression of the haem oxygenase gene (Keyse & Tyrrell, 1989) by a transient enhancement in transcription rate (Keyse et al., 1990). cis-Acting enhancer elements have been shown to be involved in activation of the collagenase and c-fos, as well as human immunodeficiency promoter (Stein et al., 1989). In both rat fibroblasts and human keratinocyte cell lines, exposure to UVR increased the levels of c-fos RNA within 10 min and of c-myc RNA after about 1 h. The levels peaked at 30 min and 7 h and returned to normal within 1 h and 24 h, respectively. The order of effectiveness was UVC > UVB > UVA.
Elevated levels of p53 protein were observed in mouse cells treated with UVR; the increase was due to post-translation activation or stabilization (Maltzman & Czyzyk, 1984). In human keratinocytes exposed to UVA, increased levels of human epidermal growth factor receptor RNA (HER-1) were found (Yang et al., 1988).

The mechanisms that mediate these transient and immediate inducible responses are largely unknown. Some of them, however, overlap with those seen in response to tumour promoters, and it is significant that natural sunlight has been reported to enhance the expression of protein kinase C in cultured human epithelial P3 cells (Peak et al., 1991a). For reviews of this general area, see Ananthaswamy and Pierceall (1990) and Ronai et al. (1990).

Other transient responses to UVR have been noted at somewhat later times (12–48 h). Methotrexate resistance due to gene amplification was reported in 3T6 mouse cells (Tlsty et al., 1984). Another selective DNA amplification response is induction by UVR of viral DNA synthesis, e.g., of polyoma virus in rat fibroblasts. UVC was more effective than UVB, and UVA was ineffective (Ronai et al., 1987). In Chinese hamster embryo cells, UVC irradiation increased DNA binding to the early domain of the SV40 minimal origin, resulting in SV40 DNA amplification (Lücke-Huhle et al., 1989). The induction of asynchronous viral replication is mediated by cellular proteins that bind to specific sequences in the DNA of polyoma (Ronai & Weinstein, 1988) and SV40 viruses (Lücke-Huhle et al., 1989).

Exposure to UVR can activate viruses. This phenomenon has been known for herpes simplex virus for a long time (for a recent report, see Rooney et al., 1991). It was reported recently that UVC can activate the gene promoters of the human immunodeficiency virus (HIV) (Valerie et al., 1988) and Moloney murine sarcoma virus (Lin et al., 1990). Furthermore, activation of complete HIV grown in cells pre-exposed to UVC radiation was observed (Valerie et al., 1988). HIV activation may contribute to faster development of AIDS, which in turn may facilitate development of malignancies. Further studies showed that the HIV promoter and HIV are activated by UVC and UVB, but not UVA radiation even at very high exposures (Stanley et al., 1989; Beer et al., 1991 [abstract]; Lightfoote et al., 1992).

There are indications that pyrimidine dimers (Stein et al., 1989) or chromatin damage (Valerie & Rosenberg, 1990) play a role in the initiation of HIV activation by UVR. The in-vitro observations have been verified for UVC, UVB and UVA in experiments with transgenic mice carrying the HIV promoter/reporter gene constructs (Cavard et al., 1990; Frucht et al., 1991; Vogel et al., 1992). For reviews on the activation HIV by UVR, see Zmudzka and Beer (1990) and Beer and Zmudzka (1991).
<table>
<thead>
<tr>
<th>Test system</th>
<th>Result<sup>a</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS?, Bacillus subtilis, mutation</td>
<td>+</td>
<td>Munakata (1989)</td>
</tr>
<tr>
<td>SSB, Saccharomyces cerevisiae D7, DNA damage</td>
<td>+</td>
<td>Hannan et al. (1984)</td>
</tr>
<tr>
<td>PLM, Wheat mutation</td>
<td>+</td>
<td>Morgan et al. (1988)</td>
</tr>
<tr>
<td>DIA, DNA damage, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Chao & Rosenstein (1986)</td>
</tr>
<tr>
<td>DIA, DNA damage, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Rosenstein et al. (1989)</td>
</tr>
<tr>
<td>DIA, DNA strand breaks, Chinese hamster V79 cells</td>
<td>+</td>
<td>Eilkind & Han (1978)</td>
</tr>
<tr>
<td>DIA, DNA damage, Chinese hamster V79 cells in vitro</td>
<td>+</td>
<td>Suzuki et al. (1981)</td>
</tr>
<tr>
<td>DIA, DNA damage, C3H 10T½ mouse cells in vitro</td>
<td>+</td>
<td>Hsie et al. (1977)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zölzer et al. (1988)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells in vitro, 6-TG<sup>f</sup></td>
<td>+</td>
<td>Jacobson et al. (1978)</td>
</tr>
<tr>
<td>G5T, Gene mutation, mouse lymphoma L5178Y cells in vitro</td>
<td>+</td>
<td>Bradley & Sharkey (1977)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells in vitro, 6-TG<sup>f</sup></td>
<td>+</td>
<td>Burki & Lam (1978)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Suzuki et al. (1981)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells in vitro, 6-TG<sup>f</sup></td>
<td>+</td>
<td>Chao & Rosenstein (1985)</td>
</tr>
<tr>
<td>SIA, Sister chromatid exchange, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Dreosti et al. (1990)</td>
</tr>
<tr>
<td>MIA, Micronucleus test, mouse splenocytes in vitro</td>
<td>+</td>
<td>Withrow et al. (1980)</td>
</tr>
<tr>
<td>TBM, Cell transformation, BALB/c 3T3 mouse cells in vitro</td>
<td>+</td>
<td>Ananthaswamy & Kripke (1981)</td>
</tr>
<tr>
<td>TBM, Cell transformation, BALB/c mouse epidermal cells in vitro</td>
<td>+</td>
<td>Kennedy et al. (1980)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse embryo cells in vitro</td>
<td>+</td>
<td>Suzuki et al. (1981)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse cells in vitro</td>
<td>+</td>
<td>Fisher & Cifone (1981)</td>
</tr>
<tr>
<td>TCL, Cell transformation, mouse fibrosarcoma cells in vitro</td>
<td>+</td>
<td>Ananthaswamy (1984a)</td>
</tr>
<tr>
<td>TCL, Cell transformation, 10T½ mouse skin fibroblasts in vitro</td>
<td>+</td>
<td>Applegate & Ley (1988)</td>
</tr>
<tr>
<td>DIA, DNA damage, fish in vitro</td>
<td>+</td>
<td>Rosenstein et al. (1985)</td>
</tr>
<tr>
<td>DIIH, DNA damage, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Chao & Rosenstein (1986)</td>
</tr>
<tr>
<td>DIIH, DNA damage, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein (1988)</td>
</tr>
<tr>
<td>DIIH, DNA damage, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein & Mitchell (1991)</td>
</tr>
<tr>
<td>DIIH, DNA damage, human HeLa cells in vitro</td>
<td>+</td>
<td>Eilkind & Han (1978)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human<sup>e</sup> fibroblasts in vitro</td>
<td>+</td>
<td>Knees-Matzen et al. (1991)</td>
</tr>
</tbody>
</table>
Table 32 (contd)

<table>
<thead>
<tr>
<th>Test system</th>
<th>Result<sup>a</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIH, Sister chromatid exchange, human xeroderma pigmentosum fibroblasts</td>
<td>+</td>
<td>Bielfeld et al. (1989)</td>
</tr>
<tr>
<td>SIH, Sister chromatid exchange, human malignant melanoma cells</td>
<td>+</td>
<td>Roser et al. (1989)</td>
</tr>
<tr>
<td>MIH, Micronucleus test, human xeroderma pigmentosum fibroblasts</td>
<td>+</td>
<td>Bielfeld et al. (1989)</td>
</tr>
<tr>
<td>MIH, Micronucleus test, human malignant melanoma cells</td>
<td>+</td>
<td>Roser et al. (1989)</td>
</tr>
<tr>
<td>DVA, DNA damage, BALB/c mouse skin cells <i>in vivo</i></td>
<td>+</td>
<td>Ananthaswamy & Fisher (1981)</td>
</tr>
<tr>
<td>DVA, DNA damage, marsupial corneal cells <i>in vivo</i></td>
<td>+</td>
<td>Freeman et al. (1988a)</td>
</tr>
<tr>
<td>DVA, DNA damage, marsupial corneal cells <i>in vivo</i></td>
<td>+</td>
<td>Ley et al. (1988)</td>
</tr>
<tr>
<td>TVI, Cell transformation, 10<sup>17</sup> mouse skin fibroblasts treated <i>in vivo</i> scored <i>in vitro</i></td>
<td>+</td>
<td>Ananthaswamy (1984b)</td>
</tr>
<tr>
<td>DVH, DNA damage, human skin cells <i>in vivo</i></td>
<td>+</td>
<td>Eggset et al. (1983)</td>
</tr>
<tr>
<td>DVH, DNA damage, human skin cells <i>in vivo</i></td>
<td>+</td>
<td>Freeman et al. (1988b)</td>
</tr>
</tbody>
</table>

^a +, positive

^b First-degree relatives of melanoma patients
Table 33. Genetic and related effects of predominantly UVA irradiation (near UV)

<table>
<thead>
<tr>
<th>Test system</th>
<th>Resulta</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2, Escherichia coli WP2 hcr−, reverse mutation</td>
<td>+</td>
<td>Kuhitschek (1967)</td>
</tr>
<tr>
<td>ECR, Escherichia coli wild type, reverse mutation</td>
<td>+</td>
<td>Tyrrell (1982)</td>
</tr>
<tr>
<td>SSB, Saccharomyces cerevisiae wild type, DNA damage</td>
<td>+</td>
<td>Zölzer & Kiefer (1983)</td>
</tr>
<tr>
<td>SSB, Saccharomyces cerevisiae excision-deficient, DNA damage</td>
<td>+</td>
<td>Zölzer & Kiefer (1983)</td>
</tr>
<tr>
<td>SSB, Saccharomyces cerevisiae D7, DNA damage</td>
<td>+</td>
<td>Hannan et al. (1984)</td>
</tr>
<tr>
<td>DIA, DNA damage, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>DIA, DNA strand breaks, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Churchill et al. (1991)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Singh & Gupta (1982)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Lundgren & Wulf (1988)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus</td>
<td>+</td>
<td>Wells & Han (1984)</td>
</tr>
<tr>
<td>G90, Gene mutation, Chinese hamster lung V79 cells, 6-TGf</td>
<td>+</td>
<td>Wells & Han (1984)</td>
</tr>
<tr>
<td>G5T, Gene mutation, mouse lymphoma L5178Y cells, tk locus</td>
<td>+</td>
<td>Hitchins et al. (1987)</td>
</tr>
<tr>
<td>SIC, Sister chromatid exchange, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Lundgren & Wulf (1988)</td>
</tr>
<tr>
<td>CIC, Chromosomal aberrations, Chinese hamster ovary cells in vitro</td>
<td>(+)</td>
<td>Lundgren & Wulf (1988)</td>
</tr>
<tr>
<td>TCL, Cell transformation, Syrian hamster embryo cells in vitro (neoplastic transformation)</td>
<td>+</td>
<td>Barrett et al. (1978)</td>
</tr>
<tr>
<td>TCL, Cell transformation, Syrian hamster embryo cells in vitro (morphological transformation)</td>
<td>-</td>
<td>Barrett et al. (1978)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein & Ducore (1983)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human teratoma cells in vitro</td>
<td>+</td>
<td>Peak et al. (1987)</td>
</tr>
<tr>
<td>DIH, DNA double strand breaks, human teratocarcinoma cells in vitro</td>
<td>+</td>
<td>Peak & Peak (1990)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human fibroblasts in vitro</td>
<td>+</td>
<td>Francis & Giannelli (1991)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human epithelial P3 cells in vitro</td>
<td>+</td>
<td>Peak et al. (1991b)</td>
</tr>
<tr>
<td>DIH, Pyrimidine dimer formation, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Enninga et al. (1986)</td>
</tr>
</tbody>
</table>
Table 33 (contd)

<table>
<thead>
<tr>
<th>Test system</th>
<th>Result<sup>a</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIH, Pyrimidine dimer formation, human skin fibroblasts <i>in vitro</i></td>
<td>+</td>
<td>Rosenstein & Mitchell (1987)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human lymphoblastoid cell line <i>in vitro</i></td>
<td>-</td>
<td>Tyrrell (1984)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human skin fibroblasts <i>in vitro</i></td>
<td>+</td>
<td>Enninga <i>et al.</i> (1986)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human epithelial cells <i>in vitro</i></td>
<td>+<sup>b</sup></td>
<td>Jones <i>et al.</i> (1987)</td>
</tr>
<tr>
<td>DVH, Pyrimidine dimer formation, human skin <i>in vivo</i></td>
<td>+</td>
<td>Freeman <i>et al.</i> (1989)</td>
</tr>
</tbody>
</table>

^a+ , positive; (+), weakly positive; -, negative

^bPositive result with 365 nm but not with 334 nm at same fluence
Table 34. Genetic and related effects of predominantly UVB irradiation

<table>
<thead>
<tr>
<th>Test system</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA9, Salmonella typhimurium TA98, reverse mutation</td>
<td>+</td>
<td>Calkins et al. (1987)</td>
</tr>
<tr>
<td>EC2, Escherichia coli WP2, reverse mutation</td>
<td>+</td>
<td>Peak et al. (1984)</td>
</tr>
<tr>
<td>TSC, Tradescantia, chromosomal aberrations</td>
<td>+</td>
<td>Kirby-Smith & Craig (1957)</td>
</tr>
<tr>
<td>DIA, DNA damage, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>DIA, DNA strand breaks, Chinese hamster V79 cells</td>
<td>+</td>
<td>Matsumoto et al. (1991)</td>
</tr>
<tr>
<td>DIA, DNA-protein cross-links, Chinese hamster V79 cells</td>
<td>+</td>
<td>Matsumoto et al. (1991)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Rasmussen et al. (1989)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells, hprt locus</td>
<td>+</td>
<td>Wells & Han (1984)</td>
</tr>
<tr>
<td>G90, Gene mutation, Chinese hamster V79 lung cells, ouabainr</td>
<td>+</td>
<td>Wells & Han (1984)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells, ouabainr</td>
<td>+</td>
<td>Colella et al. (1986)</td>
</tr>
<tr>
<td>G51, Gene mutation, mouse lymphoma L5178Y cells in vitro</td>
<td>+</td>
<td>Jacobson et al. (1981)</td>
</tr>
<tr>
<td>SIC, Sister chromatid exchange, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Rasmussen et al. (1989)</td>
</tr>
<tr>
<td>CIA, Chromosomal aberrations, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Rosenstein & Rosenstem (1985)</td>
</tr>
<tr>
<td>TCS, Cell transformation, Syrian hamster embryo cells in vitro</td>
<td>+</td>
<td>Doniger et al. (1981)</td>
</tr>
<tr>
<td>DIIH, DNA strand breaks, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein & Ducore (1983)</td>
</tr>
<tr>
<td>DIIH, Pyrimidine dimer formation, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Enninga et al. (1986)</td>
</tr>
<tr>
<td>DIIH, Pyrimidine dimer formation, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein & Mitchell (1987)</td>
</tr>
<tr>
<td>DIIH, DNA strand breaks, human teratoma in vitro</td>
<td>+</td>
<td>Peak et al. (1987)</td>
</tr>
<tr>
<td>DIIH, DNA double strand breaks, human teratocarcinoma in vitro</td>
<td>+</td>
<td>Peak & Peak (1990)</td>
</tr>
<tr>
<td>DIIH, Pyrimidine dimer formation in human skin keratinocytes in vitro</td>
<td>+</td>
<td>Schothorst et al. (1991)</td>
</tr>
<tr>
<td>DIIH, Thymine dimer formation, human fibroblasts in vitro</td>
<td>+</td>
<td>Roza et al. (1988)</td>
</tr>
<tr>
<td>DIIH, Gene mutation, human lymphoblastoid cell line in vitro</td>
<td>-</td>
<td>Tyrrell (1984)</td>
</tr>
<tr>
<td>DIII, Gene mutation, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Enninga et al. (1986)</td>
</tr>
<tr>
<td>TTH, Cell transformation, human fibroblasts in vitro</td>
<td>+</td>
<td>Sutherland et al. (1981)</td>
</tr>
<tr>
<td>DVA, Cyclobutane dimers in SV40 plasmid DNA in human fibroblasts in vivo</td>
<td>+</td>
<td>Mitchell et al. (1991)</td>
</tr>
<tr>
<td>DVA, Cytosine photohydrates in SV40 plasmid DNA in human fibroblasts in vivo</td>
<td>+</td>
<td>Mitchell et al. (1991)</td>
</tr>
<tr>
<td>Test system</td>
<td>Result(^a)</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DVA, Pyrimidine dimer induction, mouse skin \textit{in vivo}</td>
<td>+</td>
<td>Cooke & Johnson (1978)</td>
</tr>
<tr>
<td>DVA, Pyrimidine dimer formation, mouse skin \textit{in vivo}</td>
<td>+</td>
<td>Ley \textit{et al.} (1983)</td>
</tr>
<tr>
<td>DVA, (6-4) Photoproduct formation, mouse epidermis \textit{in vivo}</td>
<td>+</td>
<td>Olsen \textit{et al.} (1989)</td>
</tr>
<tr>
<td>DVH, Pyridine dimer formation, human skin \textit{in vivo}</td>
<td>+</td>
<td>Freeman \textit{et al.} (1989)</td>
</tr>
<tr>
<td>UVH, Unscheduled DNA synthesis, human cornea \textit{in vivo}(^b)</td>
<td>+</td>
<td>Grabner & Brenner (1981)</td>
</tr>
</tbody>
</table>

\(^a\) +, positive; −, negative

\(^b\) From people who had been dead for 15 min
Table 35. Genetic and related effects of UVC irradiation

<table>
<thead>
<tr>
<th>Test system</th>
<th>Resulta</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECB, Escherichia coli, thymine dimer formation</td>
<td>+</td>
<td>Setlow et al. (1963)</td>
</tr>
<tr>
<td>ECB, Escherichia coli, photoproduct formation</td>
<td>+</td>
<td>Setlow (1968)</td>
</tr>
<tr>
<td>ECB, Escherichia coli, thymine photoadduct formation</td>
<td>+</td>
<td>Smith (1964)</td>
</tr>
<tr>
<td>SSB, Saccharomyces cerevisiae, pyrimidine dimer formation</td>
<td>+</td>
<td>Wheatcroft et al. (1975)</td>
</tr>
<tr>
<td>SCF, Saccharomyces cerevisiae, forward mutation</td>
<td>+</td>
<td>Parry et al. (1979)</td>
</tr>
<tr>
<td>PLU, Plants, DNA damage</td>
<td>+</td>
<td>Siede & Eckardt (1986)</td>
</tr>
<tr>
<td>DM?, Drosophila melanogaster embryo cells in vitro, DNA damage</td>
<td>+</td>
<td>Kirby-Smith & Craig (1957)</td>
</tr>
<tr>
<td>DIA, DNA damage, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Koval (1987)</td>
</tr>
<tr>
<td>DIA, DNA strand breaks, Chinese hamster V79 cells</td>
<td>+</td>
<td>Chao & Rosenstein (1986)</td>
</tr>
<tr>
<td>DIA, DNA damage, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Elkind & Han (1978)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Zelle et al. (1980)</td>
</tr>
<tr>
<td>GCO, Gene mutation, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Rasmussen et al. (1989)</td>
</tr>
<tr>
<td>G9H, Gene mutation, Chinese hamster V79 lung cells in vitro</td>
<td>+</td>
<td>Drobetsky & Glickman (1990)</td>
</tr>
<tr>
<td>Test system</td>
<td>Result</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>G51, Gene mutation, mouse lymphoma L5178Y cells in vitro</td>
<td>+</td>
<td>Jacobson et al. (1981)</td>
</tr>
<tr>
<td>SIC, Sister chromatid exchange, Chinese hamster V79 cells in vitro</td>
<td>+</td>
<td>Nishi et al. (1984)</td>
</tr>
<tr>
<td>SIC, Sister chromatid exchange, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Rasmussen et al. (1989)</td>
</tr>
<tr>
<td>SIA, Sister chromatid exchange, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Chao & Rosenstein (1985)</td>
</tr>
<tr>
<td>SIA, Sister chromatid exchange, chick embryo fibroblasts in vitro</td>
<td>+</td>
<td>Natarajan et al. (1980)</td>
</tr>
<tr>
<td>CIC, Chromosomal aberrations, Chinese hamster fibroblasts in vitro</td>
<td>+</td>
<td>Chu (1965a)</td>
</tr>
<tr>
<td>CIC, Chromosomal aberrations, Chinese hamster fibroblasts in vitro</td>
<td>+</td>
<td>Chu (1965b)</td>
</tr>
<tr>
<td>CIC, Chromosomal aberrations, Chinese hamster V79 cells in vitro</td>
<td>+</td>
<td>Bender et al. (1973)</td>
</tr>
<tr>
<td>CIC, Chromosomal aberrations, Chinese hamster ovary cells in vitro</td>
<td>+</td>
<td>Griggs & Bender (1973)</td>
</tr>
<tr>
<td>CIA, Chromosomal aberrations, chick embryo fibroblasts in vitro</td>
<td>+</td>
<td>Trosko & Brewen (1967)</td>
</tr>
<tr>
<td>CIA, Chromosomal aberrations, A8W243 Xenopus cells in vitro</td>
<td>+</td>
<td>Natarajan et al. (1980)</td>
</tr>
<tr>
<td>CIA, Chromosomal aberrations, ICR 2A frog cells in vitro</td>
<td>+</td>
<td>Griggs & Bender (1973)</td>
</tr>
<tr>
<td>CIA, Chromosomal aberrations, New Zealand black mouse fetal fibroblasts</td>
<td>+</td>
<td>Rosenblatt & Rosenblatt (1985)</td>
</tr>
<tr>
<td>TBM, Cell transformation, BALB/c 3T3 mouse cells</td>
<td>+</td>
<td>Reddy et al. (1978)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse cells</td>
<td>+</td>
<td>Withrow et al. (1980)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T² mouse cells</td>
<td>+</td>
<td>Chan & Little (1976)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse cells</td>
<td>+</td>
<td>Mondal & Heidelberger (1976)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse cells</td>
<td>+</td>
<td>Chan & Little (1979)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T³ mouse cells</td>
<td>+</td>
<td>Suzuki et al. (1981)</td>
</tr>
<tr>
<td>TCM, Cell transformation, C3H 10T½ mouse cells</td>
<td>+</td>
<td>Borek et al. (1989)</td>
</tr>
<tr>
<td>TCS, Cell transformation, Syrian hamster embryo cells</td>
<td>+</td>
<td>DiPaolo & Donovan (1976)</td>
</tr>
<tr>
<td>TCS, Cell transformation, Syrian hamster embryo cells</td>
<td>+</td>
<td>Doniger et al. (1981)</td>
</tr>
<tr>
<td>TCS, Cell transformation, Syrian hamster embryo cells</td>
<td>+</td>
<td>Borek et al. (1989)</td>
</tr>
<tr>
<td>TEV, Cell transformation, SV-40/BALB/c 3T3 mouse cells</td>
<td>+</td>
<td>Withrow et al. (1980)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Rosenstein & Ducore (1983)</td>
</tr>
<tr>
<td>DIH, DNA damage, human skin fibroblasts *in vitro</td>
<td>+</td>
<td>Rosenstein et al. (1985)</td>
</tr>
<tr>
<td>DIH, Pyrimidine dimer formation, human skin fibroblasts *in vitro</td>
<td>+</td>
<td>Enninga et al. (1986)</td>
</tr>
<tr>
<td>DIH, Pyrimidine dimer formation, human skin fibroblasts *in vitro</td>
<td>+</td>
<td>Rosenstein & Mitchell (1987)</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human teratoma cells *in vitro</td>
<td>+</td>
<td>Peak et al. (1987)</td>
</tr>
<tr>
<td>DIH, Thymine dimer formation, human skin fibroblasts *in vitro</td>
<td>+</td>
<td>Roza et al. (1988)</td>
</tr>
<tr>
<td>DIH, DNA damage, human skin fibroblasts *in vitro</td>
<td>+</td>
<td>Chao & Rosenblstein (1986)</td>
</tr>
<tr>
<td>Test system</td>
<td>Resulta</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DIH, DNA strand breaks, human fibroblasts in vitro</td>
<td>+</td>
<td>Lai & Rosenstein (1990)</td>
</tr>
<tr>
<td>DIH, DNA-protein cross-links, human fibroblasts in vitro</td>
<td>+</td>
<td>Lai & Rosenstein (1990)</td>
</tr>
<tr>
<td>DIH, DNA double strand breaks, human teratocarcinoma cells in vitro</td>
<td>+</td>
<td>Peak & Peak (1990)</td>
</tr>
<tr>
<td>DIH, Pyrimidine dimer formation, human skin keratinocytes and melanocytes in vitro</td>
<td>+</td>
<td>Schothorst et al. (1991)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human fibroblasts in vitro</td>
<td>+</td>
<td>Maher et al. (1979)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human fibroblasts in vitro</td>
<td>+</td>
<td>Myhr et al. (1979)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human lymphocytes in vitro</td>
<td>+</td>
<td>Sanderson et al. (1984)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human lymphoblastoid cell line in vitro</td>
<td>+</td>
<td>Tyrrell (1984)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Enninga et al. (1986)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human HeLa cells in vitro</td>
<td>+</td>
<td>Musk et al. (1989)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human lymphocytes in vitro</td>
<td>+</td>
<td>Norimura et al. (1990)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human fibroblasts in vitro</td>
<td>+</td>
<td>Dorado et al. (1991)</td>
</tr>
<tr>
<td>GIH, Gene mutation, human melanoma cells in vitro</td>
<td>+</td>
<td>McGregor et al. (1991)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human fibroblasts in vitro</td>
<td>+</td>
<td>Musk et al. (1989)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human skin fibroblasts</td>
<td>+</td>
<td>Fujiwara et al. (1981)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human skin fibroblasts</td>
<td>+</td>
<td>Kurihara et al. (1987)</td>
</tr>
<tr>
<td>SHL, Sister chromatid exchange, human lymphocytes in vitro</td>
<td>+</td>
<td>Murthy et al. (1982)</td>
</tr>
<tr>
<td>SHL, Sister chromatid exchange, human lymphocytes in vitro</td>
<td>+</td>
<td>Perticone et al. (1986)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human skin fibroblasts</td>
<td>+</td>
<td>De Weerd-Kastelein et al. (1977)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human skin fibroblasts</td>
<td>+</td>
<td>Krepsinsky et al. (1980)</td>
</tr>
<tr>
<td>SHF, Sister chromatid exchange, human skin fibroblasts</td>
<td>+</td>
<td>Henderson et al. (1985)</td>
</tr>
<tr>
<td>MIH, Micronucleus test, human skin fibroblasts in vitro</td>
<td>+</td>
<td>Krepsinsky et al. (1980)</td>
</tr>
<tr>
<td>CHF, Chromosomal aberrations, human fibroblasts in vitro</td>
<td>+</td>
<td>Parrington (1972)</td>
</tr>
<tr>
<td>CHF, Chromosomal aberrations, human skin fibroblasts</td>
<td>+</td>
<td>Parrington et al. (1971)</td>
</tr>
<tr>
<td>CHF, Chromosomal aberrations, human skin fibroblasts</td>
<td>+</td>
<td>Marshall & Scott (1976)</td>
</tr>
<tr>
<td>CHL, Chromosomal aberrations, human lymphocytes in vitro</td>
<td>+</td>
<td>Murthy et al. (1982)</td>
</tr>
<tr>
<td>CHL, Chromosome exchanges, human lymphocytes in vitro</td>
<td>+</td>
<td>Holmberg & Gumauskas (1990)</td>
</tr>
<tr>
<td>TIH, Cell transformation, human fibroblasts in vitro</td>
<td>+</td>
<td>Sutherland et al. (1981)</td>
</tr>
<tr>
<td>TIH, Cell transformation, human fibroblasts in vitro</td>
<td>+</td>
<td>Maher et al. (1982)</td>
</tr>
</tbody>
</table>
Table 35 (contd)

<table>
<thead>
<tr>
<th>Test system</th>
<th>Result<sup>a</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIH, Cell transformation, human fibroblasts <i>in vitro</i></td>
<td>+</td>
<td>Sutherland <i>et al.</i> (1988)</td>
</tr>
<tr>
<td>???, Cyclobutane dimers in SV40 plasmid DNA in human skin fibroblasts <i>in vitro</i> and <i>in vivo</i></td>
<td>+</td>
<td>Mitchell <i>et al.</i> (1991)</td>
</tr>
<tr>
<td>???, Cytosine photohydrates in SV40 plasmid DNA in human skin fibroblasts <i>in vitro</i> and <i>in vivo</i></td>
<td>+</td>
<td>Mitchell <i>et al.</i> (1991)</td>
</tr>
<tr>
<td>DVA, Pyrimidine dimer formation, mouse skin <i>in vivo</i></td>
<td>+</td>
<td>Bowden <i>et al.</i> (1975)</td>
</tr>
</tbody>
</table>

^a+ , positive
5. Summary of Data Reported and Evaluation

5.1 Exposure data

Terrestrial life is dependent on radiant energy from the sun. Approximately 5% of solar terrestrial radiation is ultraviolet radiation (UVR), and solar radiation is the major source of human exposure to UVR. Before the beginning of this century, the sun was essentially the only source of UVR, but with the advent of artificial sources the opportunity for additional exposure has increased.

UVR spans the wavelengths from 100 to 400 nm. The biological effects of UVR vary enormously with wavelength; by convention, the ultraviolet spectrum has been further subdivided into three regions: UVC (100–280 nm), UVB (280–315 nm) and UVA (315–400 nm).

Solar UVR that reaches the Earth’s surface comprises approximately 95% UVA and 5% UVB: UVC is completely filtered out by the Earth’s atmosphere. The amount of solar UVR measured at the Earth’s surface depends upon a number of factors, which include solar zenith angle (time of day, season and geographical latitude), stratospheric ozone, atmospheric pollutants, weather, ground reflectance and altitude.

Exposed skin surface is irradiated differently depending on cultural and social behaviour, clothing, the position of the sun in the sky and the relative position of the body. Exposure to UVB of the most exposed skin surfaces, such as nose, tops of the ears and forehead, relative to that of the lesser exposed areas, such as underneath the chin, normally ranges over an order of magnitude. Ground reflectance plays a major role in exposure to UVB of the eye and shaded skin surfaces, particularly with highly reflective surfaces such as snow.

In cutaneous photobiology, radiant exposure is frequently expressed as ‘exposure dose’ in units of J/cm² (or J/m²). ‘Biologically effective dose’, derived from radiant exposure weighted by an action spectrum, is expressed in units of J/cm² (effective) or as multiples of ‘minimal erythema dose’ (MED). In cellular photobiology, the term ‘fluence’ is often used incorrectly as equivalent to radiant exposure.

The cumulative annual exposure dose of solar UVR varies widely among individuals in a given population, depending to a large extent on occupation and extent of outdoor activities. For example, it has been estimated that indoor workers in mid-latitudes (40–60 °N) receive an annual exposure dose of solar UVR to the face of about 40–160 times the MED, depending upon propensity for outdoor activities, whereas the annual solar exposure dose for outdoor workers is typically around 250 times the MED. Because few actual measurements have been reported of personal exposures, these estimates should be considered to be very approximate and subject to differences in cultural and social behaviour, clothing, occupation and outdoor activities.
Cumulative annual outdoor exposures may be augmented by exposures to artificial sources of UVR. For example, the use of cosmetic tanning appliances increased in popularity in the 1980s. The majority of users are young women, and the median annual exposure dose is probably 20–30 times the MED. Currently used appliances emit primarily UVA radiation; prior to the 1980s, tanning lamps emitted higher proportions of UVB and UVC.

UVR has been used for several decades to treat skin diseases, notably psoriasis. A variety of sources of UVR are employed, and nearly all emit a broad spectrum of radiation. A typical dose in a single course of UVB phototherapy might lie between 200 and 300 times the MED.

UVR is used in many different industries, yet there is a paucity of data concerning human exposure from these applications, probably because in normal practice sources are well-contained and exposure doses are expected to be low. Acute reactions to overexposure are common among electric arc welders. Staff in hospitals who work with unenclosed phototherapy equipment are at potential risk of overexposure unless protective measures are taken. Individuals exposed to lighting from fluorescent lamps may typically receive annual exposure doses of UVR ranging from 0 to 30 times the MED, depending on illuminance levels and whether or not the lamps are housed behind plastic diffusers. There is increasing use of tungsten–halogen lamps, which also emit UVR, for general lighting.

5.2 Human carcinogenicity data

5.2.1 Solar radiation

Subjects with the inherited condition xeroderma pigmentosum appear to have frequencies of nonmelanocytic skin cancer and melanoma that are much higher than expected. Some evidence suggests that the greatest excess occurs on the head and neck.

(a) **Nonmelanocytic skin cancer**

The results of descriptive epidemiological studies suggest that exposure to sunlight increases the risk of nonmelanocytic skin cancer. These tumours occur predominantly on the skin of the face and neck, which is most commonly exposed to sunlight, although the distribution of basal-cell carcinomas is not as closely related to the distribution of exposure to the sun as is that of squamous-cell carcinomas. There is a strong inverse relationship between latitude and incidence of or mortality from skin cancer and, conversely, a positive relationship between incidence or mortality and measured or estimated ambient UVR. Migrants to Australia from the British Isles have lower incidence of and mortality from nonmelanocytic skin cancer than the Australian-born population. People who work primarily outdoors have higher mortality from these cancers, and there is some evidence that outdoor workers have higher incidence.

In several cross-sectional studies, positive associations have been seen between measures of solar skin damage and the prevalence of basal- and squamous-cell carcinomas. Measures of actual exposure to the sun have been less strongly associated with these cancers, possibly because of errors in measurement and inadequate control for potential confounding variables. In a study of US fishermen, estimates of individual annual and cumulative exposure to UVB were positively associated with the occurrence of squamous-cell carcinoma but not with the occurrence of basal-cell carcinoma.
Only two population-based case-control studies have been conducted. In one of these, from Canada, the response rate was low and the measures of exposure were crude. In the other study, from Australia, facial telangiectasia and solar elastosis of the neck were strongly associated with the risk for squamous-cell carcinoma, and cutaneous microtopography and solar elastosis of the neck were strongly associated with risk for basal-cell carcinoma. Migrants to Australia had a lower risk of squamous-cell carcinoma than did native-born Australians, and migrants who arrived after childhood had a lower risk for basal-cell carcinoma.

The hospital-based case-control studies that have been conducted suffer from methodological deficiencies, including choice of controls, measurement of exposure and confounding by reaction to sunlight, and are therefore difficult to interpret.

In a cohort study of nurses in the USA, those who spent more than 8 h per week outside without sunscreens had a similar incidence rate of basal-cell carcinoma to those who spent fewer than 8 h per week outdoors. In a cohort study from Victoria, Australia, the rates of both types of skin cancer were increased in outdoor workers, but the effect was not significant after adjustment for reaction to sunlight.

(b) Cancer of the lip

Cancer of the lip has been related to outdoor occupation in a number of descriptive studies. Migrants to Australia and Israel have lower risks than native-born residents.

Three case-control studies provide useful information about the association between outdoor work, taken as a proxy measure for exposure to UVR, and cancer of the lip. All of them showed a significantly increased risk, although potential confounding by tobacco use was not controlled adequately in any of the studies.

Assessment of the carcinogenicity of solar radiation for the lip is complicated by the fact that carcinoma of the lip as actually diagnosed is a mixture of cancers of the external lip and cancers of the buccal membranes. Use of alcohol and tobacco are known causes of the latter tumours.

(c) Malignant melanoma of the skin

Descriptive studies in whites in North America, Australia and several other countries show a positive association between incidence of and mortality from melanoma and residence at lower latitudes. Studies of migrants suggest that the risk of melanoma is related to solar radiant exposure at the place of residence in early life. The body site distribution of melanoma shows lower rates per unit area on sites usually unexposed to the sun than on usually or regularly exposed sites.

A large number of case-control studies are pertinent to the relationship between melanoma and exposure to the sun. These include large, carefully conducted population-based studies carried out in Western Australia, Queensland, western Canada and Denmark. Their results are generally consistent with positive associations with residence in sunny environments throughout life, in early life and even for short periods in early adult life. Positive associations are generally seen between measurements of cumulative sun damage expressed biologically as microtopographical changes or history of keratoses or nonmelanocytic skin cancer.
In contrast, the associations with total exposure to the sun over a lifetime or in recent years, as assessed by questionnaire, are inconsistent. This inconsistency may be due to differences in the effects of chronic and intermittent exposure. Chronic exposure, as assessed through occupational exposure, appeared to reduce melanoma risk in three of the large studies, particularly in men; this observation is consistent with the descriptive epidemiology of the condition, which shows lower risks in groups that work outdoors. Several other studies, which were generally smaller or had less detailed methods of exposure assessment, show either no effect or an increased risk associated with occupational exposures.

Assessment of intermittent exposure is complex; nonetheless, most studies show positive associations with measure of intermittent exposure, such as particular sun-intensive activities, outdoor recreation or vacations.

Most studies show positive associations with a history of sunburn; however, this association cannot be easily interpreted, because while it might accurately reflect sunburn it could just as well reflect either the tendency to sunburn, if exposed, or intermittent exposure more generally.

(d) Melanoma of the eye

There is no latitude gradient among white populations of the incidence of ocular neoplasms, some 80% of which are likely to be ocular melanomas. No effect of southern US birthplace was seen in the two descriptive studies in the USA that examined this aspect.

Four case-control studies, from western Canada and from Philadelphia, San Francisco and Boston, USA, provided information on the association between exposure to solar radiation and ocular melanoma. All of these studies demonstrate an increased risk of ocular melanoma in people with light skin, light eye colour or light hair colour. Two of the studies compared effect of southern US birthplace with birth elsewhere in the USA; a significant difference was seen in the Philadelphia study.

Past residence south of 40°N latitude was positively associated with ocular melanoma in the Boston study but was not significant in the Philadelphia study after control for southern birthplace. Although several outdoor activities, such as gardening and sunbathing, were associated in the Philadelphia study with ocular melanoma, participation in outdoor activities did not increase risk significantly in Boston or San Francisco.

The lack of consistency of the results of these studies makes their interpretation difficult.

(e) Other cancers

No adequate study was available to evaluate the role of solar radiation in cancers at other body sites.

5.2.2 Artificial sources of ultraviolet radiation

No adequate study was available on nonmelanocytic skin cancer in relation to exposure to artificial sources of UVR.

Two case-control studies, one from Scotland and one from Ontario, with detailed information on use of sunbeds and sunlamps showed positive relationships between duration of use and risk of melanoma of the skin. Several other studies with limited information showed no association.
One case-control study from Sydney, Australia, showed a positive relationship between melanoma of the skin and exposure to fluorescent lights at work among women, but the measurement of exposure was crude and among exposed cases there was a relative excess of melanoma on the trunk, a site likely to be covered at work. A more detailed study from Australia showed no consistent association between cumulative exposure or rate of exposure to fluorescent lights and melanoma. Two other studies had detailed information on exposure. One, from Scotland, showed no such association, while the other, from England, had inconsistent effects depending on the method of ascertainment of information. Another study, from New York, with limited information also showed inconsistent effects depending on the source of information.

Two case-control studies, from Boston and Philadelphia, USA, showed significant positive associations between use of sunlamps and melanoma of the eye. Another case-control study, from San Francisco, showed an increased risk for exposure to 'UV or black light', although the nature of the exposure was not specified.

Two studies, from Philadelphia and Montréal, showed significant positive associations between welding and melanoma of the eye.

5.2.3 Molecular genetics of human skin cancers

Base substitutions in a tumour suppressor gene, p53, found in human squamous-cell skin carcinomas that had developed at sites exposed to the sun were similar to those found in experimental systems exposed to UVR, and especially to UVB.

5.3 Carcinogenicity in experimental animals

Solar radiation was tested for carcinogenicity in a series of exceptional studies in mice and rats. Large numbers of animals were studied, and well-characterized benign and malignant skin tumours developed in most of the surviving animals. Although the reports are deficient in quantitative details, the results provide convincing evidence that sunlight is carcinogenic for the skin of animals.

Broad-spectrum UVR (solar-simulated radiation and ultraviolet lamps emitting mainly UVB) was tested for carcinogenicity in many studies in mice, to a lesser extent in rats and in a few experiments in hamsters, guinea-pigs, opossums and fish. Benign and malignant skin tumours were induced in all of these species except guinea-pigs, and tumours of the cornea and conjunctiva were induced in rats, mice and hamsters.

The predominant type of tumours induced by UVR in mice is squamous-cell carcinoma. Basal-cell carcinomas have been observed occasionally in athymic nude mice and rats exposed to UVR. Melanocytic neoplasms of the skin were shown to develop following exposure of opossums and hybrid fish to broad-spectrum UVR.

Studies in hairless mice demonstrated the carcinogenicity of exposures to UVR in the wavelength ranges 315–400 nm (UVA), 280–315 nm (UVB) and ≤ 280 nm (UVC). UVB radiation being the most effective, followed by UVC and UVA. UVB radiation is three to four orders of magnitude more effective than UVA. Both short-wavelength UVA (315–340 nm) and long-wavelength UVA (340–400 nm) induced skin cancer in hairless mice. The carcinogenic effectiveness of the latter waveband is known only as an average value over the
entire range; the uncertainty of this average is about one order of magnitude. In none of the experiments involving UVC was it possible to exclude completely a contribution of UVB, but the size of the effects observed indicate that they cannot be due to UVB alone.

No experimental data were available on the carcinogenicity to animals of radiation from general lighting fixtures, including fluorescent and quartz halogen lamps.

UVR has been studied in protocols involving two-stage chemical carcinogenesis (substituting UVR for the chemical initiator or for the chemical promoter or giving it in addition to both). UVR has been reported to exert many effects on the carcinogenic process, including initiation, promotion, cocarcinogenicity and even tumour inhibition. Chemical immuno-suppressive agents have been shown to enhance the probability of developing UVR-induced tumours in mice.

5.4 Other relevant data

5.4.1 Transmission and absorption

Studies of transmission in whole human and mouse epidermis and human stratum corneum in vitro show that these tissues attenuate radiation in the solar UVR range. This attenuation, which is more pronounced for the UVB than for the UVA wavebands, affords some protection from solar UVR to dividing cells in the basal layer.

The different components of the human eye act as optical filters for the UVR range. Consequently, little or no UVR reaches the retina in the normal eye.

5.4.2 Effects on the skin

UVR produces erythema, melanin pigmentation and acute and chronic cellular and histological changes in humans. Generally consistent changes are seen in experimental species, including the hairless mouse.

The action spectra for erythema and tanning in humans and for oedema in hairless mice are similar. UVB is three to four times more effective than UVA in producing erythema. In humans, pigmentation protects against erythema and histopathological changes. People with a poor ability to tan, who burn easily and have light eye and hair colour are at a higher risk of developing melanoma, basal-cell and squamous-cell carcinomas (see section 5.2).

In humans, acquired pigmented naevi and solar keratoses, indicators of melanomas and squamous-cell carcinomas, respectively, are induced by exposure to the sun.

Xeroderma pigmentosum patients have a high frequency of pigmentary abnormalities and skin cancers on sun-exposed skin. These patients also have defective DNA repair.

5.4.3 Effects on the immune response

Relatively few investigations have been reported of the effects of UVR on immunity in humans, but changes do occur. There is evidence that contact allergy is suppressed by exposure to UVB and possibly to UVA radiation. The number of Langerhans’ cells in the epidermis is decreased by exposure to UVR and sunlight, and the morphological loss of these cells is associated with changes in antigen-presenting cell function in the direction of suppression; this change may be due not only to simple loss of function but also to active
migration of other antigen-presenting cells into the skin. A reduction in natural killer cell activity also occurs, which can be produced by UVA radiation. These changes are short-lived, and their functional significance is unknown. Pigmentation of the skin may not protect against some UVR-induced alterations of immune function.

Several immune responses are suppressed by UVR in mice and other rodents. Suppression of contact hypersensitivity has received most attention, and this response may be impaired locally, at the site of exposure to radiation, or systemically, at a distant, unexposed site. The two forms of suppression have different dose dependencies—systemic suppression requiring much higher doses—and their mechanisms appear to differ, but the efferent limb of each involves generation of hapten-specific T-suppressor cells that block induction but not elicitation of contact hypersensitivity. Systemic suppression of delayed hypersensitivity to injected antigens can also be produced by exposure to UVB radiation, and several observations suggest that the mechanism of this suppression differs from that of systemic suppression of contact hypersensitivity.

Alterations in immune function induced by exposure to UVR play a central role in photocarcinogenesis in mice. UVR-induced T-suppressor cells block a normal immune-surveillance system that prevents the growth of highly antigenic UVR-induced tumours. It is not known whether this mechanism operates in humans.

5.4.4 DNA photoproducts

Solar UVR induces a variety of photoproducts in DNA, including cyclobutane-type pyrimidine dimers, pyrimidine–pyrimidone (6-4) photoproducts, thymine glycols, cytosine damage, purine damage, DNA strand breaks and DNA–protein cross-links. Substantial information on biological consequences is available only for the first two classes. Both are potentially cytotoxic and can lead to mutations in cultured cells, and there is evidence that cyclobutane-type pyrimidine dimers may be precarcinogenic lesions. The relative and absolute levels of each type of lesion vary with wavelength. Substantial levels of thymidine glycols, strand breaks and DNA–protein cross-links are induced by solar UVA and UVB radiation, but not by UVC radiation. The ratio of strand breaks to cyclobutane-type dimer lesions increases as a function of increasing wavelength. In narrow band-width studies, the longest wavelength at which cyclobutane-type pyrimidine dimers have been observed is 365 nm, whereas the induction of strand breaks and DNA–protein cross-links has been observed at wavelengths in the UVB, UVA and visible ranges. Non-DNA chromophores such as porphyrins, which absorb solar UVR, appeared to be important in generating active intermediates that can lead to damage. Solar UVR also induces membrane damage.

5.4.5 Genetic and related effects

Measurable DNA damage is induced in human skin cells in vivo after exposures to UVA, UVB and UVC radiation, including doses in the range commonly experienced by humans. Most of the DNA damage after a single exposure is repaired within 24 h. The importance of these wavelength ranges depends on several factors. UVB is the most effective, UVC being somewhat less effective and UVA being much less effective, when compared on a per photon basis, probably owing to a combination of the biological effectiveness of the different wavebands and of their absorption in the outer layers of the skin.
Summary table of genetic and related effects of ultraviolet A radiation

<table>
<thead>
<tr>
<th>Nonmammalian systems</th>
<th>Mammalian systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In vitro</td>
</tr>
<tr>
<td></td>
<td>Animal cells</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

In completing the table, the following symbols indicate the consensus of the Working Group with regard to the results for each endpoint:

- + considered to be positive for the specific endpoint and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group: sperm abnormality, mouse
- - considered to be negative
- -1 considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g., there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)
Summary table of genetic and related effects of ultraviolet B radiation

<table>
<thead>
<tr>
<th>Nonmammalian systems</th>
<th>Mammalian systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prokaryotes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower eukaryotes</td>
<td></td>
</tr>
<tr>
<td>Plants</td>
<td></td>
</tr>
<tr>
<td>In vitro/In vivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal cells</td>
<td></td>
</tr>
<tr>
<td>Human cells</td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td></td>
</tr>
<tr>
<td>D G</td>
<td>D G</td>
</tr>
<tr>
<td>D R</td>
<td>D G</td>
</tr>
<tr>
<td>G A</td>
<td>G A</td>
</tr>
<tr>
<td>D G</td>
<td>D G</td>
</tr>
<tr>
<td>C R</td>
<td>C R</td>
</tr>
<tr>
<td>G C</td>
<td>G C</td>
</tr>
<tr>
<td>A C</td>
<td>A C</td>
</tr>
<tr>
<td>D G</td>
<td>D G</td>
</tr>
<tr>
<td>S M</td>
<td>S M</td>
</tr>
<tr>
<td>C A</td>
<td>C A</td>
</tr>
<tr>
<td>T I</td>
<td>T I</td>
</tr>
<tr>
<td>D G</td>
<td>D G</td>
</tr>
<tr>
<td>S M</td>
<td>S M</td>
</tr>
<tr>
<td>C A</td>
<td>C A</td>
</tr>
<tr>
<td>T I</td>
<td>T I</td>
</tr>
<tr>
<td>D G</td>
<td>D G</td>
</tr>
<tr>
<td>S M</td>
<td>S M</td>
</tr>
<tr>
<td>C A</td>
<td>C A</td>
</tr>
<tr>
<td>DL A</td>
<td>DL A</td>
</tr>
<tr>
<td>D S</td>
<td>D S</td>
</tr>
<tr>
<td>M C</td>
<td>M C</td>
</tr>
<tr>
<td>A C</td>
<td>A C</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+ 1</td>
<td>+ 1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+ 1</td>
<td>+ 1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

In completing the tables, the following symbols indicate the consensus of the Working Group with regard to the results for each endpoint:

+ considered to be positive for the specific endpoint and level of biological complexity
+ 1 considered to be positive, but only one valid study was available to the Working Group; sperm abnormality, mouse
- considered to be negative
- 1 considered to be negative, but only one valid study was available to the Working Group
? considered to be equivocal or inconclusive (e.g., there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)
Summary table of genetic and related effects of ultraviolet C radiation

<table>
<thead>
<tr>
<th>Nonmammalian systems</th>
<th>Mammalian systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In vitro</td>
</tr>
<tr>
<td>Prokaryotes</td>
<td>Plants</td>
</tr>
<tr>
<td></td>
<td>Animal cells</td>
</tr>
<tr>
<td></td>
<td>Animals</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>R</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>R</td>
<td>C</td>
</tr>
</tbody>
</table>

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; Dl, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

In completing the tables, the following symbols indicate the consensus of the Working Group with regard to the results for each endpoint:

- + considered to be positive for the specific endpoint and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group; sperm abnormality, mouse
- - considered to be negative
- -1 considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g., there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)
Solar and 'solar-simulated' radiation and radiation from sunlamps (UVA and UVB) are
mutagenic to prokaryotes and plants, induce DNA damage in fish and in amphibian cells in
vitro, are mutagenic to and induce sister chromatid exchange in amphibian cells, induce
micronucleus formation and transformation in mammalian cells in vitro, are mutagenic to
and induce DNA damage and sister chromatid exchange in human cells in vitro and induce
DNA damage in mammalian skin cells irradiated in vivo.

UVA radiation is mutagenic to prokaryotes and induces DNA damage in fungi. It is
mutagenic to and induces DNA damage, chromosomal aberrations and sister chromatid
exchange in mammalian cells and induces DNA damage and mutation in human cells in vitro.

UVB radiation is mutagenic to prokaryotes and induces chromosomal aberrations in
plants. It is mutagenic to and induces DNA damage, sister chromatid exchange and transfor-
mation in mammalian cells, is mutagenic and induces DNA damage and transformation in
human cells in vitro and induces DNA damage in mammalian skin cells irradiated in vivo.

UVC radiation induces DNA damage in and is mutagenic to prokaryotes, fungi and
plants and induces DNA damage in insects and aneuploidy in yeast. It induces sister
chromatid exchange in amphibian and avian cells in vitro; it is mutagenic to and induces DNA
damage, chromosomal aberrations, sister chromatid exchange and transformation in
mammalian and human cells in vitro; and it induces DNA damage in mammalian skin cells
irradiated in vivo.

UVR in the three wavelength ranges can induce or enhance cellular and viral gene
expression.

5.5 Evaluation¹

There is sufficient evidence in humans for the carcinogenicity of solar radiation. Solar
radiation causes cutaneous malignant melanoma and nonmelanocytic skin cancer.

There is limited evidence in humans for the carcinogenicity of exposure to ultraviolet
radiation from sunlamps and sunbeds.

There is inadequate evidence in humans for the carcinogenicity of exposure to fluo-
rescent lighting.

There is inadequate evidence in humans for the carcinogenicity of other sources of arti-
ficial ultraviolet radiation.

There is sufficient evidence for the carcinogenicity of solar radiation in experimental
animals.

There is sufficient evidence for the carcinogenicity of broad-spectrum ultraviolet radia-
tion in experimental animals.

There is sufficient evidence for the carcinogenicity of ultraviolet A radiation in experi-
mental animals.

There is sufficient evidence for the carcinogenicity of ultraviolet B radiation in experi-
mental animals.

¹For definition of the italicized terms, see Preamble, pp. 32-35.
There is sufficient evidence for the carcinogenicity of ultraviolet C radiation in experimental animals.

Overall evaluation

Solar radiation *is carcinogenic to humans* (Group 1).

Ultraviolet A radiation *is probably carcinogenic to humans* (Group 2A).

Ultraviolet B radiation *is probably carcinogenic to humans* (Group 2A).

Ultraviolet C radiation *is probably carcinogenic to humans* (Group 2A).

Use of sunlamps and sunbeds *entails exposures that are probably carcinogenic to humans* (Group 2A).

Exposure to fluorescent lighting *is not classifiable as to its carcinogenicity to humans* (Group 3).
6. References

229

REFERENCES

Banerjee, S.K., Borden, A., Christensen, R.B., LeClerc, J.E. & Lawrence, C.W. (1990) SOS-Dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared to replication past this lesion in uninduced cells. *J. Bacteriol.*, 172, 2105-2112

Barth, C., Knuschke, P. & Barth, J. (1990) Examination of welders exposed to UV radiation (Ger.). *Z. ges. Hyg.*, 36, 654-655

REFERENCES

REFERENCES

Clemmesen, J. (1965) Statistical Studies in the Aetiology of Malignant Neoplasms. I. Review and Results, Copenhagen, Munksgaard, p. 409

REFERENCES

Diffey, B.L. (1987b) Analysis of the risk of skin cancer from sunlight and solaria in subjects living in northern Europe. *Photodermatology, 4*, 118-126

Diffey, B.L. (1989a) Ultraviolet radiation and skin cancer. Are physiotherapists at risk? *Physiotherapy, 75*, 615-616

REFERENCES

REFERENCES

Gardiner, B.G. & Kirsch, P.J. (1991) European Intercomparison of Ultraviolet Spectrometers, Pano-rama, Greece, 3-12 July 1991 (Report to the Commission of the European Communities [STEP Project 76], Science and Technology for Environmental Protection), Luxembourg, Commission of the European Communities

REFERENCES

Green, A.C., Sorahan, T., Pope, D., Siskind, V., Hansen, M., Hanson, L., Leech, P., Ball, P.M. & Grimley, R.P. (1988b) Moles in Australian and British schoolchildren (Letter to the Editor). Lancet, ii, 1497

REFERENCES

Grob, J.J., Gouvernet, J., Aymar, D., Mostaque, A., Romanolo, M.H., Collet, A.M., Noe, M.C.,
Diconstanzo, M.P. & Bonerandi, J.J. (1990) Count of benign melanocytic nevi as a major indi-

de Gruijl, F.R. & van der Leun, J.C. (1982b) Systemic influence of pre-irradiation of a limited skin area

734

spleen and lymph nodes of ultraviolet-irradiated mice. Transplantation, 33, 280–284

presenting cell function by ultraviolet radiation administered in vivo. Transplantation, 36, 304–
309

Monogr., 10, 225–243

Hall, J.D. & Mount, D.W (1981) Mechanisms of DNA replication and mutagenesis in ultraviolet-
irradiated bacteria and mammalian cells. Prog. nucleic Acid Res. mol. Biol., 25, 53–126

contact sensitization to nitrogen mustard. Br. J. Dermatol., 105, 71–76

genotoxic effects of natural sunlight in relation to skin cancer in Saudi Arabia. Cancer Res., 44,
2192–2197

Hanson, D.L. & DeLeo, V.A. (1989) Long wave ultraviolet radiation stimulates arachidonic acid
release and cyclooxygenase activity in mammalian cells in culture. Photochem. Photobiol., 49,
423–430

Philadelphia, PA, WB. Saunders

Caucasian renal allograft recipients living in a subtropical climate. Surgery, 87, 177–183

Hariharan, P.V. & Cerutti, P.A. (1976) Excision of ultraviolet and gamma ray products of the
5,6-dihydroxy-dihydrothymine type by nuclear preparations of xeroderma pigmentosum cells.
Biochim. biophys. Acta, 447, 375–378

Hariharan, P.V. & Cerutti, P.A. (1977) Formation of products of the 5,6-dihydroxydihydrothymine
type by ultraviolet light in HeLa cells. Biochemistry, 16, 2791–2795

Hietanen, M. (1990) Spectroradiometric and Photometric Studies on Ocular Exposure to Ultraviolet and Visible Radiation from Light Sources, PhD Thesis, Helsinki, University of Helsinki, Department of Physics

Hoffman, J.S. (1987) Ultraviolet Radiation and Melanoma (with a Special Focus on Assessing the Risks of Stratospheric Ozone Depletion) (EPA 400/1-87-001D), Washington DC, Office of Air and Radiation, US Environmental Protection Agency

REFERENCES

Howie, S.E.M., Norval, N., Maingay, J. & Ross, J.A. (1986a) Two phenotypically distant T cells (Ly1+2- and Ly1-2+) are involved in ultraviolet-B light-induced suppression of the efferent DTH response to HSV-1 in vivo. *Immunology*, 58, 653-658

Hupeuer, WC. (1942) Morphological aspects of experimental actinic and arsenic carcinomas in the skin of rats. *Cancer Res.*, 2, 551-559

Huldschinsky, K. (1933) Eye sarcoma in rats caused by abnormally long UV (Ger.). *Dtisch. med. Wochenschr.*, 59, 530-531

REFERENCES

Iversen, O.H. (1988) Skin tumorigenesis and carcinogenesis studies with 7,12-dimethylbenz[a]-anthracene, ultraviolet light, benzoyl peroxide (Panoxyl gel 5%) and ointment gel. Carcinogenesis, 9, 803–809

REFERENCES

REFERENCES

Kripke, M.L. & Morison, W.L. (1986a) Studies on the mechanism of systemic suppression of contact hypersensitivity by ultraviolet B radiation. Photodermatology, 3, 4-14

REFERENCES

Morison, W.L. (1983a) Phototherapy and Photochemotherapy of Skin Disease, New York, Praeger
REFERENCES

Morison, W.L., Bucana, C. & Kripke, M.L. (1984) Systemic suppression of contact hypersensitivity by UVB radiation is unrelated to the UVB-induced alterations in the morphology and number of Langerhans cells. Immunology, 52, 299–306

Noonan, F.P., Kripke, M.L., Pedersen, G.M. & Greene, M.I. (1981b) Suppression of contact hypersensitivity in mice by ultraviolet irradiation is associated with defective antigen presentation. *Immunology*, 43, 527–533

Noonan, F.P., Bucana, C., Sauder, D.N. & De Fabo, E.C. (1984) Mechanism of systemic immune suppression by UV irradiation in vivo. II. The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. *J. Immunol.*, 132, 2408–2416

REFERENCES

REFERENCES

geneic bone marrow transplantation in rats: prevention of graft versus host disease without
immunosuppression. Transpl. Proc., 21, 2995–2996

herpes simplex virus infection by ultraviolet light: a human model. J. Am. Acad. Dermatol., 17,
473–478

Perry, L.L. & Greene, M.I. (1982) Antigen presentation by epidermal Langerhans cells: loss of
function following ultraviolet (UV) irradiation in vivo. Clin. Immunol. Immunopathol., 24,
204–219

Perticone, P., Hellgren, D. & Lambert, B. (1986) Effects of UV-irradiation on the SCE frequency in
human lymphocyte cultures. Mutat. Res., 175, 83–89

(1980) Guidelines for simple sensitive significance tests for carcinogenic effects in long-term
animal experiments. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemi-
cals to Humans, Suppl. 2, Long-term and Short-term Screening Assays for Carcinogens: A Critical
Appraisal, Lyon, pp. 311–426

Characterization of a dermal derived malignant mesenchymal tumor arising in ultraviolet irra-
diated mice. Am. J. Pathol., 135, 149–159

UV-irradiated human c-Ha-ras-1 proto-oncogene DNA. Oncogene, 6, 2085–2091

p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol. Carcinog., 4,
445–449

empirical relationship. Environ. int., 17, 7–21

nm. Invest. OphthalmoL visual Sci., 16, 932–939

UV-B and UV-A applied simultaneously, separately or sequentially. Br. J. Dermatol., 110, 531–
538

Pound, A.W. (1970) Induced cell proliferation and the initiation of skin tumour formation in mice by
ultraviolet light. Pathology, 2, 269–275

Putschar, W. & Holtz, F. (1930) Production of skin tumours in rats by long duration UV irradiation
(Ger.). Z. Krebsforsch., 33, 219–260

Putvinsky, A.Y., Sokolov, A.I., Roschupkin, D.I. & Vladimirov, Y.A. (1979) Electric breakdown of
bileayer phospholipid membranes under ultraviolet irradiation-induced lipid peroxidation.

antigen-presenting function and delayed enhancement of interleukin-1 production in human epi-
dermal cells after in vivo UVB irradiation. Br. J. Dermatol., 120, 589–596

Roffo, A.H. (1939) Physico-chemical etiology of cancer (with special emphasis on the association with solar radiation) (Ger.). *Strahlentherapie*, 66, 328–350

REFERENCES

REFERENCES

REFERENCES

Stenbäck, F. (1975a) Species-specific neoplastic progression by ultraviolet light on the skin of rats, guinea pigs, hamsters and mice. *Oncology*, 31, 209–225

Sylvania (undated) *Germicidal and Short-wave Ultraviolet Radiation*, Danvers, MA, GTE Products Corporation

REFERENCES

Ullrich, S.E. (1985) Suppression of lymphoproliferation by hapten-specific suppressor T lymphocytes from mice exposed to ultraviolet radiation. Immunology, 54, 343–352

Ullrich, S.E., Yee, G.K. & Kripke, M.L. (1986a) Suppressor lymphocytes induced by epicutaneous sensitization of UV-irradiated mice control multiple immunological pathways. *Immunology, 58*, 185–190

Ultra-Violet Products, Inc. (1977) *Laboratory Applications for Ultraviolet Equipment*, San Gabriel, CA

REFERENCES

WHO (1979) *Ultraviolet Radiation* (Environmental Health Criteria 14), Geneva

REFERENCES

SUMMARY OF FINAL EVALUATIONS

<table>
<thead>
<tr>
<th>Agent</th>
<th>Degree of evidence of carcinogenicity</th>
<th>Overall evaluation of carcinogenicity to humans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human</td>
<td>Animal</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Broad-spectrum ultraviolet radiation</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet A radiation</td>
<td>S</td>
<td>2A</td>
</tr>
<tr>
<td>Ultraviolet B radiation</td>
<td>S</td>
<td>2A</td>
</tr>
<tr>
<td>Ultraviolet C radiation</td>
<td>S</td>
<td>2A</td>
</tr>
<tr>
<td>Fluorescent lighting</td>
<td>I</td>
<td>3</td>
</tr>
<tr>
<td>Sunlamps and sunbeds, use of</td>
<td>L</td>
<td>2A</td>
</tr>
</tbody>
</table>

S, sufficient evidence; L, limited evidence; I, inadequate evidence; for definitions of degrees of evidence and groupings of evaluations, see Preamble, pp. 32-35.
GLOSSARY OF TERMS

Actinic radiation: electromagnetic radiation capable of initiating photochemical reactions; UVB and UVC radiation (180–315 nm)

Albedo: that fraction of the radiation incident on a surface which is reflected back in all directions

Black light: primarily near-UV radiant energy in the 320–380 nm (or 400 nm) range

Effective irradiance: hypothetical irradiance of monochromatic radiation with a wavelength at which the action spectrum of the relevant photobiological effect is equal to unity (see also section 1.1)

Effective exposure dose: time integral of effective irradiance

Erythema: sunburn

Exposure dose: radiant exposure (J/m² unweighted) incident on biologically relevant surface

Fluence: radiant flux passing from all directions through a unit area in J/m² or J/cm², includes backscatter

Global irradiance: the irradiance of solar radiation at the Earth’s surface

Global radiation: solar radiation at the Earth’s surface comprising the sum of direct radiation from the sun and diffuse radiation from the sky

Minimal erythema dose (MED): the lowest radiant exposure of UVR that produces a threshold erythematous response 8–24 h after irradiation. There is no consensus on this response; a just perceptible reddening of the skin and erythema with sharp margins are both used as end-points.

Photoreactivation: the enzyme-mediated reversal of the biological effects of UVC or UVB radiation mediated by radiation of longer wavelength and associated with the reversion of cyclobutane-type pyrimidine dimers to monomeric pyrimidines

Radiant exposure: radiant energy delivered to a given area (J/m²)

Radiant flux: rate of flow of radiant energy (in W)

Solar simulated radiation: radiation from an artificial source (e.g., an optically filtered xenon arc lamp) that approximates the terrestrial solar spectrum

Solar zenith angle: angle between the point in the sky directly overhead (the zenith) and the sun

Spectral distribution: relative intensity of radiation of different wavelengths present in a source emission spectrum

Spectral irradiance: surface density of the radiant flux that is incident on a unit surface area per unit wavelength (see Table 1)

UVA: electromagnetic radiation of wavelength 315–400 nm
UVB: electromagnetic radiation of wavelength 280–315 nm
UVC: electromagnetic radiation of wavelength 100–280 nm
UVR: electromagnetic radiation of wavelength 100–400 nm

Zenith angle: the angle between the point in the sky directly overhead (the zenith) and another point or object
APPENDIX 1. TOPICAL SUNSCREENS

1. General

Sunscreens are physical and chemical topical preparations which attenuate the transmission of solar radiation into the skin by absorption, reflection or scattering. Physical sunscreens (sunblocks), for example zinc oxide or titanium dioxide, function by reflecting and scattering and provide protection against a broad spectrum of UV and visible wavelengths. They are normally nontoxic and have few known adverse effects. Chemical sunscreens contain one or more colourless UV-absorbing ingredients which generally absorb UVB radiation more strongly than UVA. The application of any sunscreen thus normally changes the spectrum of radiation that reaches the target cells. General information is available on sunscreens that have been or are in use (Liem & Hilderink, 1979; Boger et al., 1984; Murphy & Hawk, 1986; Pathak, 1986, 1987; Ramsay, 1989; Lowe & Shaath, 1990; Taylor et al., 1990) and on procedures for testing them (Azizi et al., 1987; Kaidbey & Gange, 1987; Urbach, 1989).

Although most sunscreens are designed to attenuate UVR, some contain additives such as bergamot oil (containing 5-methoxysoralen; see IARC, 1986, 1987) to enhance pigmentation and photoprotection (Young et al., 1991). The role of such preparations remains controversial.

The generally accepted parameter for evaluating the efficacy of sunscreen preparations is the sun protection factor (SPF), which is defined as the ratio of the least amount of UVR required to produce minimal erythema after application of a standard quantity of the sunscreen product film to the skin to that required to produce the same erythema without sunscreen application. The US Food and Drug Administration (1978) published recommendations for the testing of proprietary sunscreens. Many factors influence SPF values; particularly important are the spectral power distribution of the source used for SPF testing and a clear definition of the end-point used for assessment (see Urbach, 1989). Variations in these factors can lead to considerable differences in measured SPF values for the same product.

SPF values generally reflect the degree of protection against solar UVB radiation, but their protective capacity against UVA must also be defined. Several in-vivo and in-vitro methods have been proposed for defining protection against UVA, but there is no consensus on which is the most appropriate.

Correctly used, sunscreens are effective in preventing erythema. Little information is available, however, on their protective value against harmful immunological changes, phot-ageing or skin cancer or on their potential long-term adverse effects. The protective and adverse effects of sunscreen use are summarized below.
2. Protective effects

2.1 Against DNA damage

UVR inhibits normal (semi-conservative) DNA synthesis. Knowledge about the prevention of DNA damage is based on the results of studies of a small number of sunscreens. In a limited in-vitro study, two commercially available sunscreens (Spectranan, SPF 15.0 and Spectranan, SPF 5.6 [components unspecified]) were tested for their ability to protect against the inhibition of semi-conservative DNA synthesis or the induction of unscheduled DNA synthesis by UVB (300 nm) radiation (Arase & Jung, 1986). Protective factors were found to correlate with the stated SPF values of the sunscreens.

The ability of sunscreens to protect against UV-induced inhibition of DNA synthesis has also been tested in epidermal mouse skin. In a study of seven commercially available sunscreens [components unspecified], the calculated protection factors corresponded fairly well with the SPF values provided by the manufacturers (Walter, 1981). In a study of a single sunscreen (7.5% octyl methoxycinnamate, 4.5% benzophenone-3; SPF 15), the induction of pyrimidine dimers in human skin in situ by a solar simulator (280-400 nm) was measured as a function of fluence (up to 10 times the MED), with or without application of the sunscreen. Dimer induction was reduced by 40-fold in sunscreen-treated skin (Freeman et al., 1988).

2.2 Against acute and chronic actinic damage

Protection against erythema is well substantiated by extensive human experience; however, other cellular and metabolic activities may not be afforded the same degree of protection (Pearse & Marks, 1983). In a histological assessment of mouse skin damage, Kligman et al. (1982) found that sunscreens provided protection against the effects of chronic sunlamp irradiation. Furthermore, the application of sunscreens (SPF 6 or 15) allowed previously damaged dermis to be repaired despite continued irradiation (Kligman et al., 1983). A UVB sunscreen (2-ethylhexyl 4'-methoxycinnamate, SPF 8) was shown to protect against biochemical changes induced in collagen by Westinghouse FS20 sunlamp irradiation of mouse skin over 12 weeks (Plastow et al., 1988).

2.3 Against immunological alterations

Various investigators have examined the efficacy of sunscreens to inhibit photoimmunological reactions in the skin. Inhibition of the development of UV-induced suppression of contact hypersensitivity has been reported (Morison, 1984), but in other studies sunscreens have been ineffective in preventing immunosuppression (Gurish et al., 1981; Hersey et al., 1987; Fisher et al., 1989; van Praag et al., 1991), or mixed results have been obtained depending on the sunscreen used (Reeve et al., 1991). [The Working Group concluded that no consistent relationship could be assumed between protection against photoimmunological events and erythema and other changes in the skin.]

2.4 Against tumour formation

Some sunscreens have been shown to protect mice against UV-induced skin tumour formation (Knox et al., 1960; Kligman et al., 1980; Wulf et al., 1982; Gallagher et al., 1984; Morison, 1984). Demonstration of effectiveness against skin tumour formation is, however,
not required by regulatory bodies in evaluations of sunscreens. Sunscreen use may encourage people to have longer overall exposure to sunlight, because protection by the sunscreen reduces the effective irradiance. Kelfkens \textit{et al.} (1991) observed that exposure of mice to a daily dose of UVB over a longer period gives a higher tumour yield than the same dose given over a shorter period. Accordingly, any assessment of the overall impact of sunscreens in reducing human skin cancer should take into account both the efficacy of sunscreens in reducing UV-induced damage to the skin and concomitant human behavioural changes with respect to time spent in the sun. In some case–control studies (e.g., Holman \textit{et al.}, 1986; Beitner \textit{et al.}, 1990), use of sunscreens has been associated with an increased risk for melanoma. This association is probably the result of confounding of sun exposure by skin type or amount of exposure, because individuals who easily get sunburned or expose themselves heavily (and who are at increased risk of skin cancer) may use sunscreens more frequently than other people.

3. \textbf{Adverse effects}

3.1 \textit{Acute toxicity}

Acute toxic side-effects of specific sunscreen agents include contact irritation, allergic contact dermatitis, phototoxicity, photoallergy and staining of the skin (Schauder & Ippen, 1986; Pathak, 1987; Knobler \textit{et al.}, 1989).

3.2 \textit{Chronic toxicity}

Relatively little information is available on the mutagenic and carcinogenic potential of sunscreen agents. This deficiency was reviewed in a report by the US National Cancer Institute (1989), which recommended the following six compounds for chronic testing in the US National Toxicology Program rodent test programme: cinoxate, 2-ethylhexyl 2-cyano-3,3-diphenyl-acrylate, 2-ethylhexyl \textit{para}-methoxycinnamate, homosalate, methyl anthranilate and oxybenzone. The bases for selecting these compounds, together with extensive references, are given in the report. In short, neither epidemiological data nor long-term mammalian carcinogenicity studies are available on these compounds. The results of in-vitro testing were assessed as either negative or inconsistent among test systems or among batches of a compound (because of impurities). 2-Ethylhexyl \textit{para}-methoxycinnamate was implicated as a potential tumour initiator in one study in which hairless mice were painted with the compound over a nine-week period and subsequently treated with the tumour promoter, croton oil (Gallagher \textit{et al.}, 1984). Subsequent work by Reeve \textit{et al.} (1985), however, failed to confirm these results, and Forbes \textit{et al.} (1989) found no evidence of tumour initiation by the compound in an initiation–promotion experiment in mice.

\textit{trans}-Urocanic acid (an additive in some commercial sunscreen products) increased the yield of simulated solar UV-induced tumours in hairless mice (Reeve \textit{et al.}, 1989). The significance of this finding for human exposure has not been evaluated.

3.3 \textit{Reduced vitamin D synthesis}

Vitamin D production is almost completely blocked in subjects who use UVB sunscreens (Matsuoka \textit{et al.}, 1987). This finding may be significant for elderly individuals, who are
already at risk for vitamin D₃ deficiency (MacLaughlin & Holick, 1985), but its significance for clinical disease remains unknown (Fine, 1988).

4. References

CUMULATIVE CROSS INDEX TO IARC MONOGRAPHS ON
THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS

The volume, page and year are given. References to corrigenda are given in parentheses.

A

A-α-C
Acetaldehyde

Acetaldehyde formylmethylhydrazone (see Gyromitrin)
Acetamide
Acetaminophen (see Paracetamol)
Acridine orange
Acriflavinium chloride
Acrolein

Acrylamide
Acrylic acid
Acrylic fibres
Acrylonitrile
Acrylonitrile-butadiene-styrene copolymers
Actinolite (see Asbestos)
Actinomycins

Adriamycin
AF-2
Aflatoxins

Aflatoxin B₁ (see Aflatoxins)
Aflatoxin B₂ (see Aflatoxins)
Aflatoxin G₁ (see Aflatoxins)
Aflatoxin G₂ (see Aflatoxins)
Aflatoxin M₁ (see Aflatoxins)
Agaritine
Alcohol drinking
Aldicarb
Aldrin
Allyl chloride
Allyl isothiocyanate
Allyl isovalerate
Aluminium production
Amaranth
S-Aminoacenaphthene

40, 245 (1986); Suppl. 7, 56 (1987)
36, 101 (1985) (corr. 42, 263);
Suppl. 7, 77 (1987)
7, 197 (1974); Suppl. 7, 389 (1987)
16, 145 (1978); Suppl. 7, 56 (1987)
13, 31 (1977); Suppl. 7, 56 (1987)
19, 479 (1979); 36, 133 (1985);
Suppl. 7, 78 (1987)
39, 41 (1986); Suppl. 7, 56 (1987)
19, 47 (1979); Suppl. 7, 56 (1987)
19, 86 (1979); Suppl. 7, 56 (1987)
19, 73 (1979); Suppl. 7, 79 (1987)
19, 91 (1979); Suppl. 7, 56 (1987)
10, 29 (1976) (corr. 42, 255);
Suppl. 7, 80 (1987)
10, 43 (1976); Suppl. 7, 82 (1987)
31, 47 (1983); Suppl. 7, 56 (1987)
1, 145 (1972) (corr. 42, 251);
10, 51 (1976); Suppl. 7, 83 (1987)
31, 63 (1983); Suppl. 7, 56 (1987)
44 (1988)
53, 93 (1991)
5, 25 (1974); Suppl. 7, 88 (1987)
36, 39 (1985); Suppl. 7, 56 (1987)
36, 55 (1985); Suppl. 7, 56 (1987)
36, 69 (1985); Suppl. 7, 56 (1987)
34, 37 (1984); Suppl. 7, 89 (1987)
8, 41 (1975); Suppl. 7, 56 (1987)
16, 243 (1978); Suppl. 7, 56 (1987)
2-Aminoanthraquinone
para-Aminoazobenzene
ortho-Aminoazotoluene

corr

para-Aminobenzoic acid
4-Aminobiphenyl

2-Amino-3,4-dimethylimidazo[4,5-f]quinoline (see MeIQ)
2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (see MeIQx)
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (see Trp-P-1)
2-Aminodipyrido[1,2-a:3',2'-d]imidazole (see Glu-P-2)
1-Amino-2-methylanthraquinone
2-Amino-3-methylimidazo[4,5-f]quinoline (see IQ)
2-Amino-6-methylidipyrido[1,2-a:3',2'-d]imidazole (see Glu-P-1)
2-Amino-3-methyl-9H-pyrido[2,3-b]indole (see MeA-C)
3-Amino-1-methyl-5H-pyrido[4,3-b]indole (see A-C)

Ammonium potassium selenide (see Selenium and selenium compounds)
Amorphous silica (see also Silica)
Amosite (see Asbestos)
Ampicillin
Anabolic steroids (see Androgenic (anabolic) steroids)
Anaesthetics, volatile
Analgescic mixtures containing phenacetin (see also Phenacetin)
Androgenic (anabolic) steroids
Angelican and some synthetic derivatives (see also Angelics)
Angelican plus ultraviolet radiation (see also Angelican and some synthetic derivatives)
Angelics
Aniline
orth-Anisidine
para-Anisidine
Anthanthrene
Anthophyllite (see Asbestos)
Anthracene
Antranimic acid
Antimony trioxide
Antimony trisulfide
ANTU (see 1-Naphthyliourea)
Apholate
Aramite®
Areca nut (see Betel quid)
Arsanic acid (see Arsenic and arsenic compounds)
Arsenic and arsenic compounds

27, 191 (1982); Suppl. 7, 56 (1987)
8, 53 (1975); Suppl. 7, 330 (1987)
8, 61 (1975) (corr. 42, 254); Suppl. 7, 56 (1987)
16, 249 (1978); Suppl. 7, 56 (1987)
1, 74 (1972) (corr. 42, 251); Suppl. 7, 91 (1987)

27, 199 (1982); Suppl. 7, 57 (1987)

7, 143 (1974); Suppl. 7, 57 (1987)
16, 43 (1978); Suppl. 7, 57 (1987)
31, 71 (1983); Suppl. 7, 57 (1987)
39, 239 (1986); Suppl. 7, 57 (1987)
7, 31 (1974); 41, 293 (1986) (corr. 52, 513; Suppl. 7, 92 (1987)

42, 39 (1987); Suppl. 7, 341 (1987)
50, 153 (1990)

11, 285 (1976); Suppl. 7, 93 (1987)
Suppl. 7, 310 (1987)
Suppl. 7, 96 (1987)
40, 291 (1986)

Suppl. 7, 57 (1987)
4, 27 (1974) (corr. 42, 252);
27, 39 (1982); Suppl. 7, 99 (1987)
27, 63 (1982); Suppl. 7, 57 (1987)
27, 65 (1982); Suppl. 7, 57 (1987)
32, 95 (1983); Suppl. 7, 57 (1987)
32, 105 (1983); Suppl. 7, 57 (1987)
16, 265 (1978); Suppl. 7, 57 (1987)
47, 291 (1989)
47, 291 (1989)

9, 31 (1975); Suppl. 7, 57 (1987)
5, 39 (1974); Suppl. 7, 57 (1987)
1, 41 (1972); 2, 48 (1973);
23, 39 (1980); Suppl. 7, 100 (1987)
CUMULATIVE CROSS INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic pentoxide (see Arsenic and arsenic compounds)</td>
<td>2, 17 (1973) (corr. 42, 252); 14 (1977) (corr. 42, 256); Suppl. 7,</td>
</tr>
<tr>
<td>Arsenic sulfide (see Arsenic and arsenic compounds)</td>
<td>106 (1987) (corr. 45, 283); 53, 441 (1991); 42, 159 (1987); Suppl. 7,</td>
</tr>
<tr>
<td>Arsenic trioxide (see Arsenic and arsenic compounds)</td>
<td>117 (1987)</td>
</tr>
<tr>
<td>Arsine (see Arsenic and arsenic compounds)</td>
<td>1, 69 (1972) (corr. 42, 251); Suppl. 7, 118 (1987)</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Suppl. 7, 118 (1987); 13, 39 (1977); Suppl. 7, 57 (1987); 26, 37 (1981); Suppl. 7, 57 (1987); 50, 47 (1990)</td>
</tr>
<tr>
<td>Atrazine</td>
<td>10, 73 (1976) (corr. 42, 255); Suppl. 7, 57 (1987)</td>
</tr>
<tr>
<td>Attapulgite</td>
<td>26, 47 (1981); Suppl. 7, 119 (1987)</td>
</tr>
<tr>
<td>Auramine (technical-grade)</td>
<td>9, 37 (1975); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Auramine, manufacture of (see also Auramine, technical-grade)</td>
<td>9, 47 (1975); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Aurothioglucose</td>
<td>9, 51 (1975); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Azacitidine</td>
<td>8, 75 (1975); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>5-Azacytidine (see Azacitidine)</td>
<td></td>
</tr>
<tr>
<td>Azaserine</td>
<td></td>
</tr>
<tr>
<td>Azathioprine</td>
<td></td>
</tr>
<tr>
<td>Aziridine</td>
<td></td>
</tr>
<tr>
<td>2-(1-Aziridinyl)ethanol</td>
<td></td>
</tr>
<tr>
<td>Aziridyl benzoquinone</td>
<td></td>
</tr>
<tr>
<td>Azobenzene</td>
<td></td>
</tr>
<tr>
<td>Barium chromate (see Chromium and chromium compounds)</td>
<td>32, 123 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Basic chromic sulfate (see Chromium and chromium compounds)</td>
<td>3, 241 (1973); 32, 129 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>BCNU (see Bischloroethyl nitrosourea)</td>
<td>29, 65 (1982); Suppl. 7, 148 (1987)</td>
</tr>
<tr>
<td>Benz[a]acridine</td>
<td>3, 45 (1973); 32, 135 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>1, 80 (1972); 29, 149, 391 (1982); Suppl. 7, 123 (1987)</td>
</tr>
<tr>
<td>Benzene</td>
<td>Suppl. 7, 125 (1987)</td>
</tr>
<tr>
<td>Benzidine</td>
<td>3, 69 (1973); 32, 147 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzidine-based dyes</td>
<td>3, 82 (1973); 32, 155 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>32, 163 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>32, 177 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[a]fluorene</td>
<td>32, 183 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[b]fluorene</td>
<td>32, 189 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[c]fluorene</td>
<td>32, 195 (1983); Suppl. 7, 58 (1987)</td>
</tr>
<tr>
<td>Benzo[g,h,i]perylenne</td>
<td>32, 205 (1983); Suppl. 7, 58 (1987)</td>
</tr>
</tbody>
</table>
Benzo[a]pyrene

Benzo[e]pyrene

para-Benzquinone dioxime

Benztrochloride (see also α-Chlorinated toluenes)

Benzoyl chloride

Benzoyl peroxide

Benzy acetate

Benzy chloride (see also α-Chlorinated toluenes)

Benzy violet 4B

Bertrandite (see Beryllium and beryllium compounds)

Beryllium and beryllium compounds

Beryllium acetate (see Beryllium and beryllium compounds)

Beryllium acetate, basic (see Beryllium and beryllium compounds)

Beryllium–aluminium alloy (see Beryllium and beryllium compounds)

Beryllium carbonate (see Beryllium and beryllium compounds)

Beryllium chloride (see Beryllium and beryllium compounds)

Beryllium–copper alloy (see Beryllium and beryllium compounds)

Beryllium–copper–cobalt alloy (see Beryllium and beryllium compounds)

Beryllium fluoride (see Beryllium and beryllium compounds)

Beryllium hydroxide (see Beryllium and beryllium compounds)

Beryllium–nickel alloy (see Beryllium and beryllium compounds)

Beryllium oxide (see Beryllium and beryllium compounds)

Beryllium phosphate (see Beryllium and beryllium compounds)

Beryllium silicate (see Beryllium and beryllium compounds)

Beryllium sulfate (see Beryllium and beryllium compounds)

Beryl ore (see Beryllium and beryllium compounds)

Betel quid chewing (see Betel quid)

BHA (see Butylated hydroxyanisole)

BHT (see Butylated hydroxytoluene)

Bis(1-aziridinyl)morpholinophosphine sulfide

Bis(2-chloroethyl)ether

N,N-Bis(2-chloroethyl)-2-naphthylamine

Bischloroethyl nitrosourea (see also Chloroethyl nitrosoureas)

1,2-Bis(chloromethoxy)ethane

1,4-Bis(chloromethoxymethyl)benzene

Bis(chloromethyl)ether

Bis(2-chloro-l-methylethyl)ether

Bis(2,3-epoxycyclopentyl)ether

Bisphenol A diglycidyl ether (see Glycidyl ethers)

Bisulfites (see Sulfur dioxide and some sulfites, bisulfites and metabisulfites)

Bitumens

Bleomycins

Blue VRS

Boot and shoe manufacture and repair
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracken fern</td>
<td>40, 47 (1986); Suppl. 7, 135 (1987)</td>
</tr>
<tr>
<td>Brilliant Blue FCF, disodium salt</td>
<td>16, 171 (1978) (corr. 42, 257); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Bromochloroacetonitrile (see Halogenated acetonitriles)</td>
<td>52, 179 (1991)</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>52, 299 (1991)</td>
</tr>
<tr>
<td>Bromoethane</td>
<td>52, 213 (1991)</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>4, 247 (1974); Suppl. 7, 137 (1987)</td>
</tr>
<tr>
<td>1,4-Butanediol dimethanesulfonate</td>
<td>39, 67 (1986); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>n-Butyl acrylate</td>
<td>40, 123 (1986); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Butylated hydroxyanisole</td>
<td>40, 161 (1986); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>11, 225 (1976); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>β-Butyrolactone</td>
<td>11, 231 (1976); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>γ-Butyrolactone</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Cabinet-making (see Furniture and cabinet-making)</td>
<td>2, 74 (1973); 11, 39 (1976) (corr. 42, 255); Suppl. 7, 139 (1987)</td>
</tr>
<tr>
<td>Cadmium acetate (see Cadmium and cadmium compounds)</td>
<td>Cadmium and cadmium compounds</td>
</tr>
<tr>
<td>Cadmium chloride (see Cadmium and cadmium compounds)</td>
<td>10, 79 (1979); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Cadmium oxide (see Cadmium and cadmium compounds)</td>
<td>19, 115 (1979) (corr. 42, 258); Suppl. 7, 139 (1987)</td>
</tr>
<tr>
<td>Cadmium sulfate (see Cadmium and cadmium compounds)</td>
<td>39, 247 (1986) (corr. 42, 264); Suppl. 7, 390 (1987)</td>
</tr>
<tr>
<td>Cadmium sulfide (see Cadmium and cadmium compounds)</td>
<td>53, 353 (1991)</td>
</tr>
<tr>
<td>Caffeine</td>
<td>30, 295 (1983); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Calcium arsenate (see Arsenic and arsenic compounds)</td>
<td>12, 37 (1976); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Calcium chromate (see Chromium and chromium compounds)</td>
<td>32, 239 (1983); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Calcium cyclamate (see Cyclamates)</td>
<td>40, 317 (1986); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Calcium saccharin (see Saccharin)</td>
<td>3, 22 (1973); 33, 35 (1984); Suppl. 7, 142 (1987)</td>
</tr>
<tr>
<td>Cantharidin</td>
<td>1, 53 (1972); 20, 371 (1979); Suppl. 7, 143 (1987)</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>8, 83 (1975); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>Captan</td>
<td>25, 139 (1981); Suppl. 7, 378 (1987)</td>
</tr>
<tr>
<td>Carbazole</td>
<td>15, 155 (1977); Suppl. 7, 59 (1987)</td>
</tr>
<tr>
<td>3-Carbethoxypsoralen</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Carbon blacks</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Carmoisine</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Carpentry and joinery</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Carrageenan</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>Catechol</td>
<td>51, 291 (1991)</td>
</tr>
<tr>
<td>CCNU (see 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea)</td>
<td>51, 291 (1991)</td>
</tr>
</tbody>
</table>
Ceramic fibres (see Man-made mineral fibres)
Chemotherapy, combined, including alkylating agents (see MOPP and other combined chemotherapy including alkylating agents)

Chlorambucil

Chloramphenicol

Chlorendic acid
Chlordane (see also Chlordane/Heptachlor)
Chlordane/Heptachlor
Chlorodecone
Chlordimeform
Chlorinated dibenzodioxins (other than TCDD)
Chlorinated drinking-water
Chlorinated paraffins
α-Chlorinated toluenes
Chlormadinone acetate (see also Progestins; Combined oral contraceptives)
Chlornaphazine (see N,N-Bis(2-chloroethyl)-2-naphthylamine)
Chloroacetonitrile (see Halogenated acetonitriles)
Chlorobenzilate
Chlorodibromomethane
Chlorodifluoromethane
Chloroethane
1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (see also Chloroethyl nitrosoureas)
1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (see also Chloroethyl nitrosoureas)
Chloroethyl nitrosoureas
Chloroform
Chloromethyl methyl ether (technical-grade) (see also Bis(chloromethyl)ether)
(4-Chloro-2-methylphenoxy)acetic acid (see MCPA)
Chlorophenols
Chlorophenols (occupational exposures to)
Chlorophenoxy herbicides
Chlorophenoxy herbicides (occupational exposures to)
4-Chloro-ortho-phenylenediamine
4-Chloro-meta-phenylenediamine
Chloroprene
Chloropropan
Chloroquine
Chlorothalonil
para-Chloro-ortho-toluidine and its strong acid salts (see also Chlordimeform)
Chlorotrianisene (see also Nonsteroidal oestrogens)
2-Chloro-1,1,1-trifluoroethane
Chlorozotocin

296
IARC MONOGRAPHS VOLUME 55

9, 125 (1975); 26, 115 (1981); Suppl. 7, 144 (1987)
10, 85 (1976); Suppl. 7, 145 (1987); 50, 169 (1990)
48, 45 (1990)
20, 45 (1979); Suppl. 7, 146 (1987); 53, 115 (1991)
20, 67 (1979); Suppl. 7, 59 (1987)
30, 61 (1983); Suppl. 7, 59 (1987)
15, 41 (1977); Suppl. 7, 59 (1987)
52, 45 (1991)
48, 55 (1990)
Suppl. 7, 148 (1987)
6, 149 (1974); 21, 365 (1979)
5, 75 (1974); 30, 73 (1983); Suppl. 7, 60 (1987)
52, 243 (1991)
41, 237 (1986) (corr. 51, 483); Suppl. 7, 149 (1987)
52, 315 (1991)
26, 137 (1981) (corr. 42, 260); Suppl. 7, 150 (1987)
20, 67 (1979); Suppl. 7, 59 (1987)
41, 229 (1986); Suppl. 7, 60 (1987)
1, 61 (1972); 20, 401 (1979); Suppl. 7, 152 (1987)
4, 239 (1974); Suppl. 7, 131 (1987)
Suppl. 7, 154 (1987)
41, 319 (1986)
Suppl. 7, 156 (1987)
41, 357 (1986)
27, 81 (1982); Suppl. 7, 60 (1987)
27, 82 (1982); Suppl. 7, 60 (1987)
19, 131 (1979); Suppl. 7, 160 (1987)
12, 55 (1976); Suppl. 7, 60 (1987)
13, 47 (1977); Suppl. 7, 60 (1987)
30, 319 (1983); Suppl. 7, 60 (1987)
16, 277 (1978); 30, 65 (1983); Suppl. 7, 60 (1987); 48, 123 (1990)
21, 139 (1979)
41, 253 (1986); Suppl. 7, 60 (1987)
50, 65 (1990)
Cholesterol

Chromic acetate (see Chromium and chromium compounds)
Chromic chloride (see Chromium and chromium compounds)
Chromic oxide (see Chromium and chromium compounds)
Chromic phosphate (see Chromium and chromium compounds)
Crinotine ore (see Chromium and chromium compounds)
Chromium and chromium compounds

Chromium carbonyl (see Chromium and chromium compounds)
Chromium potassium sulfate (see Chromium and chromium compounds)
Chromium sulfate (see Chromium and chromium compounds)
Chromium trioxide (see Chromium and chromium compounds)
Chrysazin (see Dantron)
Chrysene

Chrysoidine
Chrysotile (see Asbestos)
Ciclosporin
CI Disperse Yellow 3
Cimetidine
Cinnamyl anthranilate

Cisplatin
Citrinin
Citrus Red No. 2

Clofibrate
Clomiphene citrate
Coal gasification
Coal-tar pitches (see also Coal-tars)
Coal-tars

Cobalt(III) acetate (see Cobalt and cobalt compounds)
Cobalt-aluminium-chromium spinel (see Cobalt and cobalt compounds)
Cobalt and cobalt compounds
Cobalt(II) chloride (see Cobalt and cobalt compounds)
Cobalt-chromium alloy (see Chromium and chromium compounds)

Cobalt-chromium-molybdenum alloys (see Cobalt and cobalt compounds)
Cobalt metal powder (see Cobalt and cobalt compounds)
Cobalt naphthenate (see Cobalt and cobalt compounds)
Cobalt(II) oxide (see Cobalt and cobalt compounds)
Cobalt(II,III) oxide (see Cobalt and cobalt compounds)
Cobalt(II) sulfide (see Cobalt and cobalt compounds)

Coffee
Coke production
Combined oral contraceptives (see also Oestrogens, progestins and combinations)

Conjugated oestrogens (see also Steroidal oestrogens)
Contraceptives, oral (see Combined oral contraceptives; Sequential oral contraceptives)

Copper 8-hydroxyquinoline
Coronene
Coumarin
Creosotes (see also Coal-tars)
meta-Cresidine
para-Cresidine
Crocidolite (see Asbestos)
Crude oil
Crystalline silica (see also Silica)
Cycasin

Cyclamates
Cyclohexanone
Cyclohexylamine (see Cyclamates)
Cyclophosphamide

D

2,4-D (see also Chlorophenoxy herbicides; Chlorophenoxy herbicides, occupational exposures to)

Dacarbazine
Dantron
D & C Red No. 9
Dapsone
Daunomycin
DDD (see DDT)
DDE (see DDT)

DDT

Decabromodiphenyl oxide
Deltamethrin
Diacetilaminoazotoluene
N,N'-Diacetylbenzidine
Dichlorvos
Diallate

2,4-Diaminoanisole

4,4'-Diaminodiphenyl ether

1,2-Diamino-4-nitrobenzene
1,4-Diamino-2-nitrobenzene
2,6-Diamino-3-(phenylazo)pyridine (see Phenazopyridine hydrochloride)
2,4-Diaminotoluene (see also Toluene diisocyanates)
CUMULATIVE CROSS INDEX

2,5-Diaminotoluene (see also Toluene diisocyanates) 16, 97 (1978); Suppl. 7, 61 (1987)
optro-Dianisidine (see 3,3'-Dimethoxybenzidine) 13, 57 (1977); Suppl. 7, 189 (1987)
Diazepam 7, 223 (1974); Suppl. 7, 61 (1987)
Diazomethane 3, 247 (1973); 32, 277 (1983);
Suppl. 7, 61 (1987)
Dibenz[a,]acridine 32, 289 (1983) (corr. 42, 262);
Suppl. 7, 61 (1987)
Dibenz[a,c]anthracene 3, 178 (1973) (corr. 43, 261);
32, 299 (1983); Suppl. 7, 61 (1987)
Dibenz[a,h]anthracene 32, 309 (1983); Suppl. 7, 61 (1987)
Dibenz[a,j]anthracene 3, 260 (1973); 32, 315 (1983);
Suppl. 7, 61 (1987)
Dibenzodioxins, chlorinated (other than TCDD) 32, 321 (1983); Suppl. 7, 61 (1987)
[see Chlorinated dibenzodioxins (other than TCDD)]
Dibenz[h,rst]pentaphene 3, 201 (1973); 32, 327 (1983);
Suppl. 7, 62 (1987)
Dibenzo[a,e]pyrene 3, 207 (1973); 32, 331 (1983);
Suppl. 7, 62 (1987)
Dibenzo[a,h]pyrene 3, 215 (1973); 32, 337 (1983);
Suppl. 7, 62 (1987)
Dibenzo[a,i]pyrene 3, 224 (1973); 32, 343 (1983);
Suppl. 7, 62 (1987)
Dibenzo[a,l]pyrene 15, 139 (1977); 20, 83 (1979);
Suppl. 7, 191 (1987)
Dibromoacetonitrile (see Halogenated acetonitriles) 39, 369 (1986); Suppl. 7, 62 (1987)
1,2-Dibromo-3-chloropropane 7, 231 (1974); 29, 213 (1982);
Suppl. 7, 192 (1987)
Dichloroacetonitrile (see Halogenated acetonitriles) 7, 231 (1974); 29, 215 (1982);
Suppl. 7, 192 (1987)
Dichloroacetylene 4, 49 (1974); 29, 239 (1982);
Suppl. 7, 193 (1987)
do-n-Dichlorobenzene 15, 149 (1977); Suppl. 7, 62 (1987)
3,3'-Dichlorobenzidine 16, 309 (1978); Suppl. 7, 62 (1987)
trans-1,4-Dichlorobutene 20, 429 (1979); Suppl. 7, 62 (1987)
3,3'-Dichloro-4,4'-diaminodiphenyl ether 20, 449 (1979); 41, 43 (1986);
Suppl. 7, 194 (1987)
1,2-Dichloroethane 2,4-Dichlorophenol (see Chlorophenols; Chlorophenols, occupational exposures to) 39, 325 (1986); Suppl. 7, 62 (1987)
(2,4-Dichlorophenoxy)acetic acid (see 2,4-D) 41, 131 (1986); Suppl. 7, 62 (1987)
2,6-Dichloro-para-phenylenediamine 41, 113 (1986); Suppl. 7, 195 (1987)
1,2-Dichloropropane 20, 97 (1979); Suppl. 7, 62 (1987);
Dichlororopene (technical-grade) 53, 267 (1991)
Dichloromethane 30, 87 (1983); Suppl. 7, 62 (1987)
Dichlorvos

Dicofol
Dicyclohexylamine (see Cyclamates)
Dieldrin
Dieneoestrol (see also Nonsteroidal oestrogens)
Diepoxybutane

Diesel and gasoline engine exhausts
Diesel fuels
Diethyl ether (see Anaesthetics, volatile)
Di(2-ethylhexyl)adipate
Di(2-ethylhexyl)phthalate

1,2-Diethylhydrazine
Diethylstilboestrol

Diethylstilboestrol dipropionate (see Diethylstilboestrol)
Diethyl sulfate

Diglycidyl resorcinol ether

Dihydrosafrole

1,8-Dihydroxyanthraquinone (see Dantron)
Dihydroxybenzenes (see Catechol; Hydroquinone; Resorcinol)
Dihydroxymethylfuratriene

Düsopropyl sulfate

Dimethisterone (see also Progestins; Sequential oral contraceptives)

Dimethoxane

3,3' -Dimethoxybenzidine
3,3' -Dimethoxybenzidine-4,4' -diisocyanate

para-Dimethylaminoazobenzene

para-Dimethylaminoazobenzenediazo sodium sulfonate

trans-2-[(Dimethylamino)methylimino]-5-{2-(5-nitro-2-furyl)-vinyl]-1,3,4-oxadiazole

4,4' -Dimethylangelicin plus ultraviolet radiation (see also Angelicin and some synthetic derivatives)

4,5' -Dimethylangelicin plus ultraviolet radiation (see also Angelicin and some synthetic derivatives)

Dimethylarsinic acid (see Arsenic and arsenic compounds)

3,3’ -Dimethylbenzidine
Dimethylcarbamoyl chloride
Dimethylformamide

1,1-Dimethylhydrazine
1,2-Dimethylhydrazine

Dimethyl hydrogen phosphite
1,4-Dimethylphenanthrene
Dimethyl sulfate

3,7-Dinitrofluoranthenes
3,9-Dinitrofluoranthenes

1,3-Dinitropyrene
1,6-Dinitropyrene

5, 125 (1974); Suppl. 7, 196 (1987)
21, 161 (1979)

46, 41 (1989)

45, 219 (1989) (corr 47, 505)

29, 257 (1982); Suppl. 7, 62 (1987)

4, 153 (1974); Suppl. 7, 62 (1987)
6, 55 (1974); 21, 173 (1979)
(corr. 42, 259); Suppl. 7, 273 (1987)

4, 277 (1974); Suppl. 7, 198 (1987);
54, 213 (1992)

11, 125 (1976); 36, 181 (1985);
Suppl. 7, 62 (1987)

1, 170 (1972); 10, 233 (1976);
Suppl. 7, 62 (1987)

24, 77 (1980); Suppl. 7, 62 (1987)

54, 229 (1992)

6, 167 (1974); 21, 377 (1979)

15, 177 (1977); Suppl. 7, 62 (1987)

4, 41 (1974); Suppl. 7, 198 (1987)

39, 279 (1986); Suppl. 7, 62 (1987)

8, 125 (1975); Suppl. 7, 62 (1987)

8, 147 (1975); Suppl. 7, 62 (1987)

Suppl. 7, 57 (1987)

Suppl. 7, 57 (1987)

1, 87 (1972); Suppl. 7, 62 (1987)

12, 77 (1976); Suppl. 7, 199 (1987)

47, 171 (1989)

4, 137 (1974); Suppl. 7, 62 (1987)

48, 85 (1990)

32, 349 (1983); Suppl. 7, 62 (1987)

4, 271 (1974); Suppl. 7, 200 (1987)

46, 189 (1989)

46, 195 (1989)

46, 201 (1989)

CUMULATIVE CROSS INDEX

1,8-Dinitropyrene
Dinitrosopentamethylenetetramine
1,4-Dioxane
2,4’-Diphenyldiamine
Direct Black 38 (see also Benzidine-based dyes)
Direct Blue 6 (see also Benzidine-based dyes)
Direct Brown 95 (see also Benzidine-based dyes)
Disperse Blue 1
Disperse Yellow 3
Disulfiram
Dithranol
Divinyl ether (see Anaesthetics, volatile)
Dulcin

E
Endrin
Enflurane (see Anaesthetics, volatile)
Eosin
Epichlorohydrin
1,2-Epoxybutane
1-Epoxyethyl-3,4-epoxycyclohexane
3,4-Epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methyl-
cyclohexane carboxylate
cis-9,10-Epoxystearic acid
Erionite
Ethinyloestradiol (see also Steroidal oestrogens)
Ethionamide
Ethyl acrylate

Ethylene
Ethylene dibromide
Ethylene oxide

Ethylene sulfide
Ethylene thiourea
Ethyl methanesulfonate
N-Ethyl-N-nitrosourea

Ethyl selenac (see also Selenium and selenium compounds)
Ethyl tellurac
Ethynodiol diacetate (see also Progestins; Combined oral
contraceptives)
Eugenol
Evans blue

F
Fast Green FCF
Fenvalerate
Ferbam

Ferric oxide
Ferrochrome (see Chromium and chromium compounds)
Flumetonuron
Fluoranthene
Fluorene
Fluorides (inorganic, used in drinking-water)
5-Fluorouracil
Fluorspar (see Fluorides)
Fluorosilicic acid (see Fluorides)
Fluroxene (see Anaesthetics, volatile)
Formaldehyde
2-(2-Formylhydrazino)-4-(5-nitro-2-furyl)thiazole
Frusemide (see Furosemide)
Fuel oils (heating oils)
Furazolidone
Furniture and cabinet-making
Furosemide
2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide (see AF-2)
Fusarenon-X

G

Gasoline
Gasoline engine exhaust (see Diesel and gasoline engine exhausts)
Glass fibres (see Man-made mineral fibres)
Glasswool (see Man-made mineral fibres)
Glass filaments (see Man-made mineral fibres)
Glu-P-1
Glu-P-2
L-Glutamic acid, 5-(2-(4-hydroxymethyl)phenylhydrazide] (see Agaritine)
Glycidaldehyde
Glycidyl ethers
Glycidyl oleate
Glycidyl stearate
Griseofulvin
Guinea Green B
Gyromitrin

H

Haematite
Haematite and ferric oxide
Haematite mining, underground, with exposure to radon
Hair dyes, epidemiology of
Halogenated acetonitriles
Halothane (see Anaesthetics, volatile)
α-HCH (see Hexachlorocyclohexanes)
CUMULATIVE CROSS INDEX

\[\beta\text{-HCH (see Hexachlorocyclohexanes)}\]
\[\gamma\text{-HCH (see Hexachlorocyclohexanes)}\]
Heating oils (see Fuel oils)
Heptachlor (see also Chlordane/Heptachlor)
Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclohexanes

Hexachlorocyclohexane, technical-grade (see Hexachlorocyclohexanes)
Hexachloroethane
Hexachlorophene
Hexamethylphosphoramide
Hexoestrol (see Nonsteroidal oestrogens)
Hycanthone mesylate
Hydralazine
Hydrazine
Hydrochloric acid
Hydrochlorothiazide
Hydrogen peroxide
Hypochlorite salts

Indeno[1,2,3-cd]pyrene

Inorganic acids (see Sulfuric acid and other strong inorganic acids, occupational exposures to mists and vapours from)
Insecticides, occupational exposures in spraying and application of IQ
Iron and steel founding
Iron-dextran complex
Iron-dextrin complex

Iron oxide (see Ferric oxide)
Iron oxide, saccharated (see Saccharated iron oxide)
Iron sorbitol–citric acid complex
Isatidine
Isoflurane (see Anaesthetics, volatile)
Isoniazid (see Isonicotinic acid hydrazide)
Isonicotinic acid hydrazide
Isophosphamide
Isopropyl alcohol
Isopropyl alcohol manufacture (strong-acid process)
(see also Isopropyl alcohol; Sulfuric acid and other strong inorganic acids, occupational exposures to mists and vapours from)
Isopropyl oils
Isosafrole

J

Jacobine
Jet fuel
Joinery (see Carpentry and joinery)

K

Kaempferol
Kepone (see Chlordecone)

L

Lasiocarpine
Lauroyl peroxide
Lead acetate (see Lead and lead compounds)
Lead and lead compounds

Lead arsenate (see Arsenic and arsenic compounds)
Lead carbonate (see Lead and lead compounds)
Lead chloride (see Lead and lead compounds)
Lead chromate (see Chromium and chromium compounds)
Lead chromate oxide (see Chromium and chromium compounds)
Lead naphthenate (see Lead and lead compounds)
Lead nitrate (see Lead and lead compounds)
Lead oxide (see Lead and lead compounds)
Lead phosphate (see Lead and lead compounds)
Lead subacetate (see Lead and lead compounds)
Lead tetroxide (see Lead and lead compounds)
Leather goods manufacture
Leather industries
Leather tanning and processing
Ledate (see also Lead and lead compounds)
Light Green SF
Lindane (see Hexachlorocyclohexanes)
The lumber and sawmill industries (including logging)
Luteoskyrin
Lynoestrenol (see also Progestins; Combined oral contraceptives)

M

Magenta

Magenta, manufacture of (see also Magenta)
Malathion
Maleic hydrazide
CUMULATIVE CROSS INDEX

Malonaldehyde 36, 163 (1985); Suppl. 7, 65 (1987)
Maneb 12, 137 (1976); Suppl. 7, 65 (1987)
Man-made mineral fibres 43, 39 (1988)
Mannomustine 9, 157 (1975); Suppl. 7, 65 (1987)
Mate 51, 273 (1991)
MCPA (see also Chlorophenoxy herbicides; Chlorophenoxy herbicides, occupational exposures to) 30, 255 (1983)
MeA-α-C 40, 253 (1986); Suppl. 7, 65 (1987)
Medphalan 9, 168 (1975); Suppl. 7, 65 (1987)
Medroxyprogesterone acetate 6, 157 (1974); 21, 417 (1979) (corr. 42, 259); Suppl. 7, 289 (1987)
Megestrol acetate (see also Progestins; Combined oral contraceptives) 40, 275 (1986); Suppl. 7, 65 (1987)
MeIQ 40, 283 (1986); Suppl. 7, 65 (1987)
MeIQx 39, 333 (1986); Suppl. 7, 65 (1987)
Melamine 9, 167 (1975); Suppl. 7, 239 (1987)
Melphalan 26, 249 (1981); Suppl. 7, 240 (1987)
Merphalan 9, 169 (1975); Suppl. 7, 65 (1987)
Mestranol (see also Steroidal oestrogens) 6, 87 (1974); 21, 257 (1979) (corr. 42, 259)
Metabisulfites (see Sulfur dioxide and some sulfites, bisulfites and metabisulfites) 26, 267 (1981); Suppl. 7, 241 (1987)
Methanearsonic acid, disodium salt (see Arsenic and arsenic compounds) 5, 193 (1974); 20, 259 (1979); Suppl. 7, 66 (1987)
Methanearsonic acid, monosodium salt (see Arsenic and arsenic compounds) 40, 327 (1986); Suppl. 7, 242 (1987)
Methotrexate 24, 101 (1980)
Methoxsalen (see 8-Methoxypсорalen) Suppl. 7, 243 (1987)
Methoxychlor 19, 52 (1979); 39, 99 (1986); Suppl. 7, 66 (1987)
Methoxyflurane (see Anaesthetics, volatile) Suppl. 7, 57 (1987)
8-Methoxypsoralen 9, 61 (1975); Suppl. 7, 66 (1987)
8-Methoxypsoralen (see also 8-Methoxypsoralen plus ultraviolet radiation) 1, 164 (1972); 10, 131 (1976); Suppl. 7, 66 (1987)
Methyl acrylate 12, 151 (1976); Suppl. 7, 66 (1987)
Methyl bromide 41, 161 (1986); Suppl. 7, 246 (1987)
Methyl carbamate 32, 379 (1983); Suppl. 7, 66 (1987)
Methyl-CCNU [see 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea] 1, 141 (1972); Suppl. 7, 66 (1987)
Methyl chloride 41, 161 (1986); Suppl. 7, 246 (1987)
1-, 2-, 3-, 4-, 5- and 6-Methylchrysenes 32, 379 (1983); Suppl. 7, 66 (1987)
N-Methyl-N,4-dinitrosoaniline 1, 141 (1972); Suppl. 7, 66 (1987)
4,4'-Methylene bis(2-chloroaniline)

4,4'-Methylene bis(N,N-dimethyl)benzenamine
4,4'-Methylene bis(2-methylaniline)
4,4'-Methyleneedianiline
4,4'-Methyleneediphenyl diisocyanate
2-Methylfluoranthene
3-Methylfluoranthene
Methylglyoxal
Methyl iodide
Methyl methacrylate
Methyl methanesulfonate
2-Methyl-1-nitroanthraquinone
N-Methyl-N'-nitro-N-nitrosoguanidine
3-Methylnitrosaminopropionaldehyde [see 3-(N-Nitrosomethylamino)-propionaldehyde]
3-Methylnitrosaminopropanitrile [see 3-(N-Nitrosomethylamino)-propanitrile]
4-(Methylnitrosamino)-4-(3-pyridyl)-1-butanal [see 4-(N-Nitrosomethylamino)-4-(3-pyridyl)-1-butanal]
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone [see 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone]
N-Methyl-N-nitrosourea

N-Methyl-N-nitrosourethane
Methyl parathion
1-Methylphenanthrene
7-Methylpyrido[3,4-c]psoralen
Methyl red
Methyl selenac (see also Selenium and selenium compounds)
Methylthiouracil
Metronidazole
Mineral oils

Mirex

Mitomycin C
MNNG [see N-Methyl-N'-nitro-N-nitrosoguanidine]
MOCA [see 4,4'-Methylene bis(2-chloroaniline)]
Modacrylic fibres
Monocrotaline
Monuron

MOPP and other combined chemotherapy including alkylating agents
Morpholine
5-(Morpholinomethyl)-3-[(5-nitrofurylidene)amino]-2-oxazolidinone
Mustard gas

27, 119 (1982); Suppl. 7, 66 (1987)
4, 73 (1974); Suppl. 7, 248 (1987)
4, 79 (1974) (corr. 42, 252);
39, 347 (1986); Suppl. 7, 66 (1987)
19, 314 (1979); Suppl. 7, 66 (1987)
32, 399 (1983); Suppl. 7, 66 (1987)
32, 399 (1983); Suppl. 7, 66 (1987)
51, 443 (1991)
15, 245 (1977); 41, 213 (1986);
Suppl. 7, 66 (1987)
19, 187 (1979); Suppl. 7, 66 (1987)
7, 253 (1974); Suppl. 7, 66 (1987)
27, 205 (1982); Suppl. 7, 66 (1987)
4, 183 (1974); Suppl. 7, 248 (1987)

1, 125 (1972); 17, 227 (1978); Suppl. 7, 66 (1987)
4, 211 (1974); Suppl. 7, 66 (1987)
30, 131 (1983); Suppl. 7, 392 (1987)
32, 405 (1983); Suppl. 7, 66 (1987)
40, 349 (1986); Suppl. 7, 71 (1987)
8, 161 (1975); Suppl. 7, 66 (1987)
12, 161 (1976); Suppl. 7, 66 (1987)
7, 53 (1974); Suppl. 7, 66 (1987)
13, 113 (1977); Suppl. 7, 250 (1987)
3, 30 (1973); 33, 87 (1984) (corr. 42, 262); Suppl. 7, 252 (1987)
5, 203 (1974); 20, 283 (1979) (corr. 42, 258); Suppl. 7, 66 (1987)
10, 171 (1976); Suppl. 7, 67 (1987)

19, 86 (1979); Suppl. 7, 67 (1987)
10, 291 (1976); Suppl. 7, 67 (1987)
12, 167 (1976); Suppl. 7, 67 (1987);
53, 467 (1991)
Suppl. 7, 254 (1987)

47, 199 (1989)
7, 161 (1974); Suppl. 7, 67 (1987)

9, 181 (1975) (corr. 42, 254); Suppl. 7, 259 (1987)
CUMULATIVE CROSS INDEX

Myleran (see 1,4-Butanediol dimethanesulfonate)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myleran (see 1,4-Butanediol dimethanesulfonate)</td>
<td>24, 125 (1980); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>Nafenopin</td>
<td>27, 127 (1982); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>1,5-Naphthalenediamine</td>
<td>19, 311 (1979); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>1,5-Naphthalene diisocyanate</td>
<td>4, 87 (1974) (corr. 42, 253); Suppl. 7, 260 (1987)</td>
</tr>
<tr>
<td>1-Naphthylamine</td>
<td>4, 97 (1974); Suppl. 7, 261 (1987)</td>
</tr>
<tr>
<td>Nickel acetate (see Nickel and nickel compounds)</td>
<td>2, 126 (1973) (corr. 42, 252); 11, 75 (1976); Suppl. 7, 264 (1987) (corr. 43, 283); 49, 257 (1990)</td>
</tr>
<tr>
<td>Nickel ammonium sulfate (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel and nickel compounds</td>
<td>13, 123 (1977); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>Nickel carbonate (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel carbonyl (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel chloride (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel-gallium alloy (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel hydroxide (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickelocene (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel oxide (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel subsulfide (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Nickel sulfate (see Nickel and nickel compounds)</td>
<td></td>
</tr>
<tr>
<td>Niridazole</td>
<td>31, 179 (1983); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>Nithiazide</td>
<td>48, 181 (1990)</td>
</tr>
<tr>
<td>Nitrilotriacetic acid and its salts</td>
<td>16, 319 (1978); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>5-Nitroacenaphthene</td>
<td>27, 133 (1982); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>5-Nitro-ortho-anisidine</td>
<td>33, 179 (1984); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>9-Nitroanthracene</td>
<td>46, 247 (1989)</td>
</tr>
<tr>
<td>6-Nitrobenzo[a]pyrene</td>
<td>4, 113 (1974); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>4-Nitrobiphenyl</td>
<td>33, 195 (1984); Suppl. 7, 67 (1987); 46, 267 (1989)</td>
</tr>
<tr>
<td>6-Nitrochrysene</td>
<td>30, 271 (1983); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>Nitrofen (technical-grade)</td>
<td>33, 201 (1984); Suppl. 7, 67 (1987); 46, 277 (1989)</td>
</tr>
<tr>
<td>3-Nitrofluoranthene</td>
<td>7, 171 (1974); Suppl. 7, 67 (1987); 50, 195 (1990)</td>
</tr>
<tr>
<td>2-Nitrofluorene</td>
<td>50, 211 (1990)</td>
</tr>
<tr>
<td>Nitrofural</td>
<td>7, 181 (1974); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>5-Nitro-2-furaldehyde semicarbazone (see Nitrofural)</td>
<td>1, 181 (1972); 7, 185 (1974); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>9, 193 (1975); Suppl. 7, 269 (1987)</td>
</tr>
<tr>
<td>Nitrofurazone (see Nitrofural)</td>
<td>9, 209 (1975); Suppl. 7, 67 (1987)</td>
</tr>
<tr>
<td>1-{(5-Nitrofurfurylidene)amino}-2-imidazolidinone</td>
<td>46, 291 (1989)</td>
</tr>
<tr>
<td>N-{4-(5-Nitro-2-furyl)-2-thiazolyl}acetamide</td>
<td>46, 303 (1989)</td>
</tr>
<tr>
<td>Nitrogen mustard</td>
<td></td>
</tr>
<tr>
<td>Nitrogen mustard N-oxide</td>
<td></td>
</tr>
<tr>
<td>1-Nitronaphthalene</td>
<td></td>
</tr>
<tr>
<td>2-Nitronaphthalene</td>
<td></td>
</tr>
</tbody>
</table>
3-Nitropyrene
2-Nitropropane
1-Nitropyrene

2-Nitropyrene
4-Nitropyrene
N-Nitrosatable drugs
N-Nitrosatable pesticides
N'-Nitrosanabasine
N'-Nitrosanatabine
N-Nitrosodi-\(n \)-butylamine

N-Nitrosodietanolamine
N-Nitrosodiethylamine

N-Nitrosodimethylamine
N-Nitrosodiphenylamine
para-Nitrosodiphenylamine

N-Nitrosodi-\(n \)-propylamine
N-Nitroso-\(N \)-ethylurea (see \(N \)-Ethyl-\(N \)-nitrosourea)
N-Nitrosofulic acid
N-Nitrosoguvacine
N-Nitrosoguvacoline
N-Nitrosohydroxyprolin
3-(\(N \)-Nitrosomethylamino)propionaldehyde
3-(\(N \)-Nitrosomethylamino)propionitrile
4-(\(N \)-Nitrosomethylamino)-4-(3-pyridyl)-1-butanal
4-(\(N \)-Nitrosomethylamino)-1-(3-pyridyl)-1-butanol

N-Nitrosomethylamine

N-Nitrosopiperidine
N-Nitrosoproline
N-Nitrosopyrrolidine
N-Nitrososarcosine

Nitrosoureas, chloroethyl (see Chloroethyl nitrosoureas)
5-Nitro-\(\text{ortho} \)-toluidine

Nitrous oxide (see Anaesthetics, volatile)
Nitrovin

NNA [see 4-(\(N \)-Nitrosomethylamino)-4-(3-pyridyl)-1-butanal]
NNK [see 4-(\(N \)-Nitrosomethylamino)-1-(3-pyridyl)-1-butanalone]

Nonsteroidal oestrogens (see also Oestrogens, progestins and combinations)
Norethisterone (see also Progestins; Combined oral contraceptives)

46, 313 (1989)
29, 331 (1982); Suppl. 7, 67 (1987)
33, 209 (1984); Suppl. 7, 67 (1987);
46, 321 (1989)
46, 359 (1989)
46, 367 (1989)
24, 297 (1980) (corr. 42, 260)
30, 359 (1983)
37, 225 (1985); Suppl. 7, 67 (1987)
37, 233 (1985); Suppl. 7, 67 (1987)
4, 197 (1974); 17, 51 (1978);
Suppl. 7, 67 (1987)
17, 77 (1978); Suppl. 7, 67 (1987)
1, 107 (1972) (corr. 42, 251);
17, 83 (1978) (corr. 42, 257);
Suppl. 7, 67 (1987)
1, 95 (1972); 17, 125 (1978)
(corr. 42, 257); Suppl. 7, 67 (1987)
27, 213 (1982); Suppl. 7, 67 (1987)
27, 227 (1982) (corr. 42, 261);
Suppl. 7, 68 (1987)
17, 177 (1978); Suppl. 7, 68 (1987)
17, 217 (1978); Suppl. 7, 68 (1987)
37, 263 (1985); Suppl. 7, 68 (1987)
37, 263 (1985); Suppl. 7, 68 (1987)
17, 304 (1978); Suppl. 7, 68 (1987)
37, 263 (1985); Suppl. 7, 68 (1987)
37, 263 (1985); Suppl. 7, 68 (1987)
37, 209 (1985); Suppl. 7, 68 (1987)
17, 221 (1978); Suppl. 7, 68 (1987)
17, 257 (1978); Suppl. 7, 68 (1987)
17, 263 (1978); Suppl. 7, 68 (1987)
17, 281 (1978); 37, 241 (1985);
Suppl. 7, 68 (1987)
17, 287 (1978); Suppl. 7, 68 (1987)
17, 303 (1978); Suppl. 7, 68 (1987)
17, 313 (1978); Suppl. 7, 68 (1987)
17, 327 (1978); Suppl. 7, 68 (1987)
48, 169 (1990)
31, 185 (1983); Suppl. 7, 68 (1987)

Suppl. 7, 272 (1987)

6, 179 (1974); 21, 461 (1979)
CUMULATIVE CROSS INDEX

Norethynodrel (see also Progestins; Combined oral contraceptives)
Norgestrel (see also Progestins, Combined oral contraceptives)
Nylon 6

O

Ochratoxin A

Oestradiol-17β (see also Steroidal oestrogens)
Oestradiol 3-benzoate (see Oestradiol-17β)
Oestradiol dipropionate (see Oestradiol-17β)
Oestradiol mustard
Oestradiol-17β-valerate (see Oestradiol-17β)
Oestriol (see also Steroidal oestrogens)
Oestrogen-progestin combinations (see Oestrogens, progestins and combinations)
Oestrogen-progestin replacement therapy (see also Oestrogens, progestins and combinations)
Oestrogen replacement therapy (see also Oestrogens, progestins and combinations)
Oestrogens (see Oestrogens, progestins and combinations)
Oestrogens, conjugated (see Conjugated oestrogens)
Oestrogens, nonsteroidal (see Nonsteroidal oestrogens)
Oestrogens, progestins and combinations
Oestrogens, steroidal (see Steroidal oestrogens)
Oestrone (see also Steroidal oestrogens)
Oestrone benzoate (see Oestrone)
Oil Orange SS
Oral contraceptives, combined (see Combined oral contraceptives)
Oral contraceptives, investigational (see Combined oral contraceptives)
Oral contraceptives, sequential (see Sequential oral contraceptives)
Orange I
Orange G
Organolead compounds (see also Lead and lead compounds)
Oxazepam
Oxymetholone (see also Androgenic (anabolic) steroids)
Oxyphenbutazone

P

Paint manufacture and painting (occupational exposures in)
Panfuran S (see also Dihydroxyethylfuratriine)
Paper manufacture (see Pulp and paper manufacture)
Paracetamol
Parasorbic acid
Parathion
Patulin
Penicillic acid
Pentachloroethane
Pentachloronitrobenzene (see Quintozene)
Pentachlorophenol (see also Chlorophenols; Chlorophenols, occupational exposures to)
Permethrin
Perylene
Petasitenine
Petasites japonicus (see Pyrrolizidine alkaloids)
Petroleum refining (occupational exposures in)
Some petroleum solvents
Phenacetin

Phenanthrene

Phenazopyridine hydrochloride

Phenelzine sulfate

Phenicarbazide

Phenobarbital

Phenol

Phenylbutazone

meta-Phenylenediamine

para-Phenylenediamine

Phenyl glycidyl ether (see Glycidyl ethers)

N-Phenyl-2-naphthylamine

ortho-Phenylphenol

Phenytoin

Picloram

Piperazine oestrone sulfate (see Conjugated oestrogens)
Piperonyl butoxide

Pitches, coal-tar (see Coal-tar pitches)

Polyacrylic acid

Polybrominated biphenyls

Polychlorinated biphenyls

Polychlorinated camphenes (see Toxaphene)

Polychloroprene

Polyethylene

Polyethylene polyphenyl isocyanate

Polyethyl methacrylate

Polyoestradiol phosphate (see Oestradiol-17ß)

Polypropylene

Polystyrene

Polytetrafluoroethylene

Polyurethane foams

Polyvinyl acetate

Polyvinyl alcohol

10, 211 (1976); Suppl. 7, 69 (1987)
41, 99 (1986); Suppl. 7, 69 (1987)
20, 303 (1979); 53, 371 (1991)
32, 411 (1983); Suppl. 7, 69 (1987)
31, 207 (1983); Suppl. 7, 69 (1987)
45, 39 (1989)
47, 43 (1989)
13, 141 (1977); 24, 135 (1980); Suppl. 7, 310 (1987)
32, 419 (1983); Suppl. 7, 69 (1987)
8, 117 (1975); 24, 163 (1980) (corr. 42, 260); Suppl. 7, 312 (1987)
24, 175 (1980); Suppl. 7, 312 (1987)
12, 177 (1976); Suppl. 7, 70 (1987)
13, 157 (1977); Suppl. 7, 313 (1987)
47, 263 (1989) (corr. 50, 385)
9, 223 (1975); 24, 185 (1980); Suppl. 7, 70 (1987)
13, 183 (1977); Suppl. 7, 316 (1987)
16, 111 (1978); Suppl. 7, 70 (1987)
16, 125 (1978); Suppl. 7, 70 (1987)
16, 325 (1978) (corr. 42, 257); Suppl. 7, 318 (1987)
30, 329 (1983); Suppl. 7, 70 (1987)
13, 201 (1977); Suppl. 7, 319 (1987)
53, 481 (1991)
30, 183 (1983); Suppl. 7, 70 (1987)
19, 62 (1979); Suppl. 7, 70 (1987)
18, 107 (1978); 41, 261 (1986); Suppl. 7, 321 (1987)
7, 261 (1974); 18, 43 (1978) (corr. 42, 258); Suppl. 7, 322 (1987)
19, 141 (1979); Suppl. 7, 70 (1987)
19, 164 (1979); Suppl. 7, 70 (1987)
19, 314 (1979); Suppl. 7, 70 (1987)
19, 195 (1979); Suppl. 7, 70 (1987)
19, 218 (1979); Suppl. 7, 70 (1987)
19, 245 (1979); Suppl. 7, 70 (1987)
19, 288 (1979); Suppl. 7, 70 (1987)
19, 320 (1979); Suppl. 7, 70 (1987)
19, 346 (1979); Suppl. 7, 70 (1987)
19, 351 (1979); Suppl. 7, 70 (1987)
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl chloride</td>
<td>7, 306 (1974); 19, 402 (1979); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Polyvinyl pyrrolidone</td>
<td>19, 463 (1979); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Ponceau MX</td>
<td>8, 189 (1975); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Ponceau 3R</td>
<td>8, 199 (1975); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Ponceau SX</td>
<td>8, 207 (1975); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Potassium arsenate (see Arsenic and arsenic compounds)</td>
<td>12, 183 (1976); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Potassium arsenite (see Arsenic and arsenic compounds)</td>
<td>40, 207 (1986); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Potassium bis(2-hydroxyethyl)dithiocarbamate</td>
<td>50, 115 (1990)</td>
</tr>
<tr>
<td>Potassium bromate</td>
<td>26, 293 (1981); Suppl. 7, 326 (1987)</td>
</tr>
<tr>
<td>Potassium chromate (see Chromium and chromium compounds)</td>
<td>26, 311 (1981); Suppl. 7, 327 (1987)</td>
</tr>
<tr>
<td>Potassium dichromate (see Chromium and chromium compounds)</td>
<td>24, 195 (1980); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Prednimustine</td>
<td>6, 135 (1974); 21, 491 (1979) (corr. 42, 259)</td>
</tr>
<tr>
<td>Prednisone</td>
<td>Suppl. 7, 289 (1987)</td>
</tr>
<tr>
<td>Procabazine hydrochloride</td>
<td>13, 227 (1977) (corr. 42, 256); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Progesterone (see also Progestins; Combined oral contraceptives)</td>
<td>12, 201 (1976); Suppl. 7, 70 (1987)</td>
</tr>
<tr>
<td>Progesterone (see also Oestrogens, progestins and combinations)</td>
<td>19, 213 (1979); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Pronetalol hydrochloride</td>
<td>11, 191 (1976); 36, 227 (1985) (corr. 42, 263); Suppl. 7, 328 (1987)</td>
</tr>
<tr>
<td>1,3-Propane sultone</td>
<td>7, 67 (1974); Suppl. 7, 329 (1987)</td>
</tr>
<tr>
<td>Propham</td>
<td>40, 55 (1986); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>n-Propyl carbamate</td>
<td>32, 431 (1983); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Propylene</td>
<td>40, 349 (1986); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Propylene oxide</td>
<td>13, 233 (1977); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Propylthiouracil</td>
<td>31, 213 (1983); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Ptaquiloside (see also Bracken fern)</td>
<td>15, 255 (1977); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Pulp and paper manufacture</td>
<td>5, 211 (1974); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Pyrido[3,4-c]psoralen</td>
<td>10, 217 (1976); 24, 211 (1980)</td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>(corr. 42, 260); Suppl. 7, 330 (1987)</td>
</tr>
<tr>
<td>Pyrrolizidine alkaloids (see Hydroxysenkirkine; Isatidine; Jacobine; Lasiocarpine; Monocrotaline; Retrorsine; Riddelliine; Seneciphylline; Senkirkine)</td>
<td>15, 155 (1977); Suppl. 7, 71 (1987)</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quercetin (see also Bracken fern)</td>
<td></td>
</tr>
<tr>
<td>para-Quinone</td>
<td></td>
</tr>
<tr>
<td>Quintozene</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Radon</td>
<td></td>
</tr>
<tr>
<td>Reserpine</td>
<td></td>
</tr>
<tr>
<td>Resorcinol</td>
<td></td>
</tr>
</tbody>
</table>
Retrorsine 10, 303 (1976); Suppl. 7, 71 (1987)
Rhodamine B 16, 221 (1978); Suppl. 7, 71 (1987)
Riddelliine 10, 313 (1976); Suppl. 7, 71 (1987)
Rifampicin 24, 243 (1980); Suppl. 7, 71 (1987)
Rockwool (see Man-made mineral fibres) 28 (1982) (corr. 42, 261); Suppl. 7, 332 (1987)
The rubber industry 40, 99 (1986); Suppl. 7, 71 (1987)

Rugulosin

S

Saccharated iron oxide 2, 161 (1973); Suppl. 7, 71 (1987)
Saccharin 22, 111 (1980) (corr. 42, 259); Suppl. 7, 334 (1987)

Safrole 1, 169 (1972); 10, 231 (1976); Suppl. 7, 71 (1987)

The sawmill industry (including logging) [see The lumber and sawmill industry (including logging)]
Scarlet Red 8, 217 (1975); Suppl. 7, 71 (1987)
Selenium and selenium compounds 9, 245 (1975) (corr. 42, 255); Suppl. 7, 71 (1987)
Selenium dioxide (see Selenium and selenium compounds) 12, 209 (1976) (corr. 42, 256); Suppl. 7, 71 (1987)
Selenium oxide (see Selenium and selenium compounds) 10, 319, 335 (1976); Suppl. 7, 71 (1987)
Semicarbazide hydrochloride 10, 327 (1976); 31, 231 (1983); Suppl. 7, 71 (1987)
Semicarbazide hydrobromide 42, 175 (1987); Suppl. 7, 71 (1987)
Selenium and selenium compounds 42, 39 (1987)

Seneciphyllyne 53, 495 (1991)

Senkirkine 52, 145 (1991)

Selenium (see Selenium and selenium compounds) 12, 217 (1976); Suppl. 7, 71 (1987)
Semicarbazide hydrochloride 10, 303 (1976); Suppl. 7, 71 (1987)
Selenium and selenium compounds 16, 221 (1978); Suppl. 7, 71 (1987)
Selenium and selenium compounds 16, 233 (1978); Suppl. 7, 71 (1987)
Selenium and selenium compounds 10, 313 (1976); Suppl. 7, 71 (1987)
Selenium and selenium compounds 24, 243 (1980); Suppl. 7, 71 (1987)

Slagwool (see Man-made mineral fibres) 40, 55 (1986); Suppl. 7, 71 (1987)
Safrole 1, 169 (1972); 10, 231 (1976); Suppl. 7, 71 (1987)

Sodium arsenate (see Arsenic and arsenic compounds) 8,217 (1975); Suppl. 7,71(1987)
Sodium arsenite (see Arsenic and arsenic compounds) 9, 245 (1975) (corr. 42, 255); Suppl. 7, 71 (1987)
Sodium cacodylate (see Arsenic and arsenic compounds) 12,209 (1976) (corr. 42, 256); Suppl. 7, 71 (1987)
Sodium chlorite 10,319,335 (1976); Suppl. 7,71 (1987)
Sodium chromate (see Chromium and chromium compounds) 10, 319, 335 (1976); Suppl. 7, 71 (1987)
Sodium chromate (see Chromium and chromium compounds) 10, 327 (1976); 31, 231 (1983); Suppl. 7, 71 (1987)
Sodium chromate (see Chromium and chromium compounds) 42, 175 (1987); Suppl. 7, 71 (1987)
Sodium dichromate (see Chromium and chromium compounds) 42, 175 (1987); Suppl. 7, 71 (1987)
Sodium diethyldithiocarbamate 42, 175 (1987); Suppl. 7, 71 (1987)
Sodium equilin sulfate (see Conjugated oestrogens) 42, 175 (1987); Suppl. 7, 71 (1987)
Sodium fluoride (see Fluorides) 42, 175 (1987); Suppl. 7, 71 (1987)

Sequential oral contraceptives (see also Oestrogens, progestins and combinations) 42, 175 (1987); Suppl. 7, 71 (1987)

Seepiolite 35, 161 (1985); Suppl. 7, 339 (1987)
Shikimic acid (see also Bracken fern) 40, 55 (1986); Suppl. 7, 71 (1987)
Shoe manufacture and repair (see Boot and shoe manufacture and repair) 42, 39 (1987)
Silica (see also Amorphous silica; Crystalline silica) 53, 495 (1991)
<table>
<thead>
<tr>
<th>Substance/Compound</th>
<th>Index Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium monofluorophosphate (see Fluorides)</td>
<td>30, 329 (1983); Suppl. 7, 392 (1987)</td>
</tr>
<tr>
<td>Sodium oestrone sulfate (see Conjugated oestrogens)</td>
<td></td>
</tr>
<tr>
<td>Sodium ortho-phenylphenate (see also ortho-Phenylphenol)</td>
<td></td>
</tr>
<tr>
<td>Sodium saccharin (see Saccharin)</td>
<td></td>
</tr>
<tr>
<td>Sodium selenate (see Selenium and selenium compounds)</td>
<td></td>
</tr>
<tr>
<td>Sodium selenite (see Selenium and selenium compounds)</td>
<td></td>
</tr>
<tr>
<td>Sodium silicofluoride (see Fluorides)</td>
<td></td>
</tr>
<tr>
<td>Solar radiation</td>
<td>55 (1992)</td>
</tr>
<tr>
<td>Soots</td>
<td>3, 22 (1973); 35, 219 (1985); Suppl. 7, 343 (1987)</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>24, 259 (1980); Suppl. 7, 344 (1987)</td>
</tr>
<tr>
<td>Stannous fluoride (see Fluorides)</td>
<td></td>
</tr>
<tr>
<td>Steel founding (see Iron and steel founding)</td>
<td></td>
</tr>
<tr>
<td>Sterigmatocystin</td>
<td>1, 175 (1972); 10, 245 (1976); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Steroidal oestrogens (see also Oestrogens, progestins and combinations)</td>
<td>Suppl. 7, 280 (1987)</td>
</tr>
<tr>
<td>Streptozotocin</td>
<td>4, 221 (1974); 17, 337 (1978); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Strobane* (see Terpene polychlorinates)</td>
<td></td>
</tr>
<tr>
<td>Strontium chromate (see Chromium and chromium compounds)</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>19, 231 (1979) (corr. 42, 258); Suppl. 7, 345 (1987)</td>
</tr>
<tr>
<td>Styrene-acrylonitrile copolymers</td>
<td>19, 97 (1979); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Styrene-butadiene copolymers</td>
<td>19, 252 (1979); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Styrene oxide</td>
<td>11, 201 (1976); 19, 275 (1979); 36, 245 (1985); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Succinic anhydride</td>
<td>15, 265 (1977); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sudan I</td>
<td>8, 225 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sudan II</td>
<td>8, 233 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sudan III</td>
<td>8, 241 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sudan Brown RR</td>
<td>8, 249 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sudan Red 7B</td>
<td>8, 253 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sulfafurazole</td>
<td>24, 275 (1980); Suppl. 7, 347 (1987)</td>
</tr>
<tr>
<td>Sulfallate</td>
<td>30, 283 (1983); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>24, 285 (1980); Suppl. 7, 348 (1987)</td>
</tr>
<tr>
<td>Sulfites (see Sulfur dioxide and some sulfites, bisulfites and metabisulfites)</td>
<td>54, 131 (1992)</td>
</tr>
<tr>
<td>Sulfur dioxide and some sulfites, bisulfites and metabisulfites</td>
<td></td>
</tr>
<tr>
<td>Sulfur mustard (see Mustard gas)</td>
<td>54, 41 (1992)</td>
</tr>
<tr>
<td>Sulfuric acid and other strong inorganic acids, occupational exposures to mists and vapours from</td>
<td></td>
</tr>
<tr>
<td>Sulfur trioxide</td>
<td>54, 121 (1992)</td>
</tr>
<tr>
<td>Sulphisoxazole (see Sulfafurazole)</td>
<td></td>
</tr>
<tr>
<td>Sunset Yellow FCF</td>
<td>8, 257 (1975); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Symphytine</td>
<td>31, 239 (1983); Suppl. 7, 72 (1987)</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Substance/Compound</th>
<th>Index Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5-T (see also Chlorophenoxy herbicides; Chlorophenoxy herbicides, occupational exposures to)</td>
<td>15, 273 (1977)</td>
</tr>
<tr>
<td>Talc</td>
<td>42, 185 (1987); Suppl. 7, 349 (1987)</td>
</tr>
</tbody>
</table>
Tannic acid

Tannins (see also Tannic acid)
TCDD (see 2,3,7,8-Tetrachlorodibenzo-para-dioxin)
TDE (see DDT)

Tea

Terpene polychlorinates
Testosterone (see also Androgenic (anabolic) steroids)
Testosterone oxenanthate (see Testosterone)
Testosterone propionate (see Testosterone)

2,2', 5,5'-Tetrachlorobenzidine

2,3,7,8-Tetrachlorodibenzo-para-dioxin
1,1,2,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane

Tetrachloroethylene

2,3,4,6-Tetrachlorophenol (see Chlorophenols; Chlorophenols, occupational exposures to)

Tetrachlorvinphos

Tetraethyllead (see Lead and lead compounds)

Tetrafluoroethylene

Tetrakis(hydroxymethyl) phosphonium salts

Tetramethyllead (see Lead and lead compounds)

Textile manufacturing industry, exposures in

Theobromine

Theophylline

Thiacetamide

4,4'-Thiodianiline

Thiouronic acid

Thiourea

Thiram

Titanium dioxide

Tobacco habits other than smoking (see Tobacco products, smokeless)

Tobacco products, smokeless

Tobacco smoke

Tobacco smoking (see Tobacco smoke)

ortho-Tolidine (see 3,3'-Dimethylbenzidine)

2,4-Toluene diisocyanate (see also Toluene diisocyanates)

2,6-Toluene diisocyanate (see also Toluene diisocyanates)

Toluene

Toluene diisocyanates

Toluene, α-chlorinated (see α-Chlorinated toluenes)

ortho-Toluene sulfonamide (see Saccharin)

ortho-Toluidine
<table>
<thead>
<tr>
<th>Compound/Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxaphene</td>
<td>20, 327 (1979); Suppl. 7, 72 (1987)</td>
</tr>
<tr>
<td>Tremolite (see Asbestos)</td>
<td>26, 341 (1981); Suppl. 7, 363 (1987)</td>
</tr>
<tr>
<td>Treosulfan</td>
<td>30, 207 (1983); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Triaziquone [see Tris(aziridinyl)-para-benzoquinone]</td>
<td>9, 229 (1975); Suppl. 7, 73 (1987); 50, 143 (1990)</td>
</tr>
<tr>
<td>Trichlorfon</td>
<td>20, 515 (1979); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Trichlormethine</td>
<td>20, 533 (1979); Suppl. 7, 73 (1987); 52, 337 (1991)</td>
</tr>
<tr>
<td>Trichloroacetanitrile (see Halogenated acetonitriles)</td>
<td>11, 263 (1976); 20, 545 (1979); Suppl. 7, 364 (1987)</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>20, 349 (1979)</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td></td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol (see also Chlorophenols; Chlorophenols occupational exposures to)</td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol (see also Chlorophenols; Chlorophenols, occupational exposures to)</td>
<td></td>
</tr>
<tr>
<td>(2,4,5-Trichlorophenox)acetic acid (see 2,4,5-T)</td>
<td></td>
</tr>
<tr>
<td>Trichlorothriethylene hydrochloride (see Trichlormethine)</td>
<td></td>
</tr>
<tr>
<td>T2-Trichotheocene</td>
<td></td>
</tr>
<tr>
<td>Triethylene glycol diglycidyl ether</td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>31, 265 (1983); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>4,4',6-Trimethylangelicin plus ultraviolet radiation (see also Angelicin and some synthetic derivatives)</td>
<td>11, 209 (1976); Suppl. 7, 73 (1987); 53, 515 (1991) Suppl. 7, 57 (1987)</td>
</tr>
<tr>
<td>2,4,5-Trimethylaniline</td>
<td>27, 177 (1982); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>2,4,6-Trimethylaniline</td>
<td>27, 178 (1982); Suppl. 7, 73 (1987); 40, 357 (1986); Suppl. 7, 366 (1987)</td>
</tr>
<tr>
<td>4,5',8-Trimethylpsoralen</td>
<td>32, 447 (1983); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Trimustine hydrochloride (see Trichlormethine)</td>
<td>9, 67 (1975); Suppl. 7, 367 (1987); 9, 75 (1975); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Triphenylene</td>
<td>48, 109 (1990)</td>
</tr>
<tr>
<td>Tris(aziridinyl)-para-benzoquinone</td>
<td>15, 301 (1977); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Tris(1-aziridinyl)phosphine oxide</td>
<td>20, 575 (1979); Suppl. 7, 369 (1987)</td>
</tr>
<tr>
<td>Tris(1-aziridinyl)phosphine sulphide (see Thiotepa)</td>
<td>9, 107 (1975); Suppl. 7, 73 (1987); 31, 247 (1983); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>2,4,6-Tris(1-aziridinyl)-s-triazine</td>
<td>31, 255 (1983); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>Tris(2-chloroethyl)phosphate</td>
<td>8, 267 (1975); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>1,2,3-Tris(chloromethoxy)propane</td>
<td></td>
</tr>
<tr>
<td>Tris(2,3-dibromopropyl)phosphate</td>
<td></td>
</tr>
<tr>
<td>Tris(2-methyl-1-aziridinyl)phosphine oxide</td>
<td></td>
</tr>
<tr>
<td>Tp-P-1</td>
<td></td>
</tr>
<tr>
<td>Tp-P-2</td>
<td></td>
</tr>
<tr>
<td>Trypan blue</td>
<td></td>
</tr>
<tr>
<td>Tussilago farfara L. (see Pyrrolizidine alkaloids)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet radiation</td>
<td>40, 379 (1986); 55 (1992)</td>
</tr>
<tr>
<td>Underground haematite mining with exposure to radon</td>
<td>1, 29 (1972); Suppl. 7, 216 (1987)</td>
</tr>
<tr>
<td>Uracil mustard</td>
<td>9, 235 (1975); Suppl. 7, 370 (1987)</td>
</tr>
<tr>
<td>Urethane</td>
<td>7, 111 (1974); Suppl. 7, 73 (1987)</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vat Yellow 4</td>
<td>48, 161 (1990)</td>
</tr>
</tbody>
</table>
Vinblastine sulfate
- 26, 349 (1981); Suppl. 7, 371 (1987)
- 26, 365 (1981); Suppl. 7, 372 (1987)
- 19, 341 (1979); 39, 113 (1986); Suppl. 7, 73 (1987)
- 19, 367 (1979); 39, 133 (1986); Suppl. 7, 73 (1987)

Vincristine sulfate
- 7, 291 (1974); 19, 377 (1979) (corr. 42, 258); Suppl. 7, 73 (1987)
- 7, 311 (1976); 19, 412 (1979) (corr. 42, 258); Suppl. 7, 73 (1987)
- 11, 277 (1976); 39, 181 (1986); Suppl. 7, 73 (1987)
- 39, 147 (1986); Suppl. 7, 73 (1987)
- 19, 439 (1979); 39, 195 (1986); Suppl. 7, 73 (1987)
- 19, 448 (1979) (corr. 42, 258); Suppl. 7, 73 (1987)
- 39, 227 (1986); Suppl. 7, 73 (1987)
- 19, 461 (1979); Suppl. 7, 73 (1987)

Vinyl acetate

Vinyl bromide

Vinyl chloride

Vinyl chloride–vinyl acetate copolymers

4-Vinylcyclohexene

Vinyl fluoride

Vinilidene chloride

Vinilidene chloride–vinyl chloride copolymers

Vinilidene fluoride

N-Vinyl-2-pyrrolidone

W
- Welding
- Wollastonite
- Wood industries

X
- Xylene
- 2,4-Xyldine
- 2,5-Xyldine

Y
- Yellow AB
- Yellow OB

Z
- Zearalenone
- Zectran
- Zinc beryllium silicate (see Beryllium and beryllium compounds)
- Zinc chromate (see Chromium and chromium compounds)
- Zinc chromate hydroxide (see Chromium and chromium compounds)
- Zinc potassium chromate (see Chromium and chromium compounds)
- Zinc yellow (see Chromium and chromium compounds)
- Zineb
- Ziram

References
- 31, 279 (1983); Suppl. 7, 74 (1987)
- 12, 237 (1976); Suppl. 7, 74 (1987)
- 12, 245 (1976); Suppl. 7, 74 (1987)
- 12, 259 (1976); Suppl. 7, 74 (1987)
- 53, 423 (1991)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Volume</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liver Cancer</td>
<td></td>
<td>1971</td>
<td>176 pages (out of print)</td>
</tr>
<tr>
<td>2</td>
<td>Oncogenesis and Herpesviruses</td>
<td></td>
<td>1971</td>
<td>176 pages (out of print)</td>
</tr>
<tr>
<td>3</td>
<td>N-Nitroso Compounds: Analysis and Formation</td>
<td></td>
<td>1972</td>
<td>140 pages (out of print)</td>
</tr>
<tr>
<td>4</td>
<td>Transplacental Carcinogenesis</td>
<td></td>
<td>1973</td>
<td>181 pages (out of print)</td>
</tr>
<tr>
<td>5/6</td>
<td>Pathology of Tumours in Laboratory Animals, Volume I, Tumours of the Rat</td>
<td></td>
<td>1973/1976</td>
<td>533 pages (out of print)</td>
</tr>
<tr>
<td>7</td>
<td>Host Environment Interactions in the Etiology of Cancer in Man</td>
<td></td>
<td>1973</td>
<td>464 pages (out of print)</td>
</tr>
<tr>
<td>8</td>
<td>Biological Effects of Asbestos</td>
<td></td>
<td>1973</td>
<td>346 pages (out of print)</td>
</tr>
<tr>
<td>9</td>
<td>N-Nitroso Compounds in the Environment</td>
<td></td>
<td>1974</td>
<td>243 pages (out of print)</td>
</tr>
<tr>
<td>10</td>
<td>Chemical Carcinogenesis Essays</td>
<td></td>
<td>1974</td>
<td>230 pages (out of print)</td>
</tr>
<tr>
<td>11</td>
<td>Oncogenesis and Herpesviruses II</td>
<td></td>
<td>1975</td>
<td>Part I: 511 pages, Part II: 403 pages (out of print)</td>
</tr>
<tr>
<td>12</td>
<td>Screening Tests in Chemical Carcinogenesis</td>
<td></td>
<td>1976</td>
<td>441 pages (out of print)</td>
</tr>
<tr>
<td>13</td>
<td>Environmental Pollution and Carcinogenic Risks</td>
<td></td>
<td>1976</td>
<td>512 pages (out of print)</td>
</tr>
<tr>
<td>14</td>
<td>Environmental N-Nitroso Compounds Analysis and Formation</td>
<td></td>
<td>1976</td>
<td>584 pages (out of print)</td>
</tr>
<tr>
<td>15</td>
<td>Cancer Incidence in Five Continents, Volume III</td>
<td></td>
<td>1976</td>
<td>584 pages (out of print)</td>
</tr>
<tr>
<td>16</td>
<td>Air Pollution and Cancer in Man</td>
<td></td>
<td>1977</td>
<td>328 pages (out of print)</td>
</tr>
<tr>
<td>17</td>
<td>Directory of On-going Research in Cancer Epidemiology</td>
<td></td>
<td>1977</td>
<td>599 pages (out of print)</td>
</tr>
<tr>
<td>19</td>
<td>Environmental Aspects of N-Nitroso Compounds</td>
<td></td>
<td>1978</td>
<td>561 pages (out of print)</td>
</tr>
<tr>
<td>20</td>
<td>Nasopharyngeal Carcinoma: Etiology and Control</td>
<td></td>
<td>1978</td>
<td>606 pages (out of print)</td>
</tr>
<tr>
<td>21</td>
<td>Cancer Registration and its Techniques</td>
<td></td>
<td>1978</td>
<td>235 pages (out of print)</td>
</tr>
<tr>
<td>23</td>
<td>Pathology of Tumours in Laboratory Animals, Volume II: Tumours of the Mouse</td>
<td></td>
<td>1979</td>
<td>669 pages (out of print)</td>
</tr>
<tr>
<td>24</td>
<td>Oncogenesis and Herpesviruses III</td>
<td></td>
<td>1978</td>
<td>Part I: 580 pages, Part II: 512 pages (out of print)</td>
</tr>
</tbody>
</table>

Prices, valid for November 1992, are subject to change without notice
List of IARC Publications

No. 25 Carcinogenic Risk. Strategies for Intervention
Edited by W. Davis and C. Rosenfeld
1979; 280 pages (out of print)

No. 26 Directory of On-going Research in Cancer Epidemiology 1978
Edited by C.S. Muir and G. Wagner
1978; 550 pages (out of print)

No. 27 Molecular and Cellular Aspects of Carcinogen Screening Tests
Edited by R. Montesano, H. Bartsch and L. Tomatis
1980; 372 pages £29.00

No. 28 Directory of On-going Research in Cancer Epidemiology 1979
Edited by C.S. Muir and G. Wagner
1979; 672 pages (out of print)

No. 29 Environmental Carcinogens. Selected Methods of Analysis. Volume 3: Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples
Editor-in-Chief: H. Egan
1979; 240 pages (out of print)

No. 30 Biological Effects of Mineral Fibres
Editor-in-Chief: J.C. Wagner
1980; Volume 1: 494 pages Volume 2: 513 pages (out of print)

No. 31 N-Nitroso Compounds: Analysis, Formation and Occurrence
Edited by E.A. Walker, L. Griciute, M. Castegnaro and M. Börzsönyi
1980; 835 pages (out of print)

No. 32 Statistical Methods in Cancer Research. Volume I. The Analysis of Case-control Studies
By N.E. Breslow and N.E. Day
1980; 338 pages £25.00

No. 33 Handling Chemical Carcinogens in the Laboratory
Edited by R. Montesano et al.
1979; 32 pages (out of print)

No. 34 Pathology of Tumours in Laboratory Animals. Volume III. Tumours of the Hamster
Editor-in-Chief: V.S. Turusov
1982; 461 pages (out of print)

No. 35 Directory of On-going Research in Cancer Epidemiology 1980
Edited by C.S. Muir and G. Wagner
1980; 660 pages (out of print)

No. 36 Cancer Mortality by Occupation and Social Class 1851-1971
Edited by W.P.D. Logan
1982; 253 pages (out of print)

No. 37 Laboratory Decontamination and Destruction of Aflatoxins B1, B2, G1, G2 in Laboratory Wastes
Edited by M. Castegnaro et al.
1980; 56 pages (out of print)

No. 38 Directory of On-going Research in Cancer Epidemiology 1981
Edited by C.S. Muir and G. Wagner
1981; 696 pages (out of print)

No. 39 Host Factors in Human Carcinogenesis
Edited by H. Bartsch and B. Armstrong
1982; 583 pages (out of print)

Edited by L. Fishbein, M. Castegnaro, I.K. O'Neill and H. Bartsch
1981; 347 pages (out of print)

No. 41 N-Nitroso Compounds: Occurrence and Biological Effects
Edited by H. Bartsch, I.K. O'Neill, M. Castegnaro and M. Okada
1982; 755 pages £50.00

No. 42 Cancer Incidence in Five Continents, Volume IV
Edited by J. Waterhouse, C. Muir, K. Shanmugaratnam and J. Powell
1982; 811 pages (out of print)

No. 43 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some N-Nitrosamines
Edited by M. Castegnaro et al.
1982; 73 pages £7.50

No. 44 Environmental Carcinogens. Selected Methods of Analysis. Volume 5: Some Mycotoxins
Edited by L. Stoloff, M. Castegnaro, P. Scott, I.K. O'Neill and H. Bartsch
1983; 508 pages £32.50

No. 45 Environmental Carcinogens. Selected Methods of Analysis. Volume 6: N-Nitroso Compounds
Edited by R. Preussmann, I.K. O'Neill, G. Eisenbrand, B. Spiegelhalder and H. Bartsch
1983; 757 pages £32.50

No. 46 Directory of On-going Research in Cancer Epidemiology 1982
Edited by C.S. Muir and G. Wagner
1982; 722 pages (out of print)

No. 47 Cancer Incidence in Singapore 1968–1977
Edited by K. Shanmugaratnam, H.P. Lee and N.E. Day
1983; 171 pages (out of print)

No. 48 Cancer Incidence in the USSR (2nd Revised Edition)
Edited by N.P. Napalkov, G.F. Berkov, V.M. Merabishvili, D.M. Parkin, M. Smans and C.S. Muir
1983; 75 pages (out of print)

No. 49 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Polycyclic Aromatic Hydrocarbons
Edited by M. Castegnaro et al.
1983; 87 pages (out of print)

No. 50 Directory of On-going Research in Cancer Epidemiology 1983
Edited by C.S. Muir and G. Wagner
1983; 731 pages (out of print)

No. 51 Modulators of Experimental Carcinogenesis
Edited by V. Turusov and R. Montesano
1983; 307 pages (out of print)
List of IARC Publications

No. 52 Second Cancers in Relation to Radiation Treatment for Cervical Cancer: Results of a Cancer Registry Collaboration
Edited by N.E. Day and J.C. Boice, Jr
1984; 207 pages (out of print)

No. 53 Nickel in the Human Environment
Editor-in-Chief: F.W. Sunderman, Jr
1984; 529 pages (out of print)

No. 54 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Hydrazines
Edited by M. Castegnaro et al.
1983; 87 pages (out of print)

No. 55 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some N-Nitrosamides
Edited by M. Castegnaro et al.
1984; 66 pages (out of print)

No. 56 Models, Mechanisms and Etiology of Tumour Promotion
Edited by M. Börzsönyi, N.E. Day, K. Lapis and H. Yamasaki
1984; 532 pages (out of print)

No. 57 N-Nitroso Compounds: Occurrence, Biological Effects and Relevance to Human Cancer
1984; 1013 pages (out of print)

No. 58 Age-related Factors in Carcinogenesis
Edited by A. Likhachev, V. Anisimov and R. Montesano
1985; 288 pages (out of print)

No. 59 Monitoring Human Exposure to Carcinogenic and Mutagenic Agents
Edited by A. Berlin, M. Draper, K. Hemminki and H. Vainio
1984; 457 pages (out of print)

No. 60 Burkitt’s Lymphoma: A Human Cancer Model
Edited by G. Lenoir, G. O’Conor and C.L.M. Olweny
1985; 484 pages (out of print)

No. 61 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Haloethers
Edited by M. Castegnaro et al.
1985; 55 pages (out of print)

No. 62 Directory of On-going Research in Cancer Epidemiology 1984
Edited by C.S. Muir and G. Wagner
1984; 717 pages (out of print)

No. 63 Virus-associated Cancers in Africa
Edited by A.O. Williams, G.T. O’Connor, G.B. de-Thé and C.A. Johnson
1984; 773 pages (out of print)

No. 64 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Aromatic Amines and 4-Nitrobiphenyl
Edited by M. Castegnaro et al.
1985; 84 pages (out of print)

No. 65 Interpretation of Negative Epidemiological Evidence for Carcinogenicity
Edited by N.J. Wald and R. Doll
1985; 232 pages (out of print)

No. 66 The Role of the Registry in Cancer Control
Edited by D.M. Parkin, G. Wagner and C.S. Muir
1985; 152 pages £10.00

No. 67 Transformation Assay of Established Cell Lines: Mechanisms and Application
Edited by T. Kakunaga and H. Yamasaki
1985; 225 pages (out of print)

No. 68 Environmental Carcinogens. Selected Methods of Analysis. Volume 7. Some Volatile Halogenated Hydrocarbons
Edited by L. Fishbein and I.K. O’Neill
1985; 479 pages (out of print)

No. 69 Directory of On-going Research in Cancer Epidemiology 1985
Edited by C.S. Muir and G. Wagner
1985; 745 pages (out of print)

No. 70 The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis
Edited by B. Singer and H. Bartsch
1986; 467 pages (out of print)

No. 71 Environmental Carcinogens. Selected Methods of Analysis. Volume 8: Some Metals: As, Be, Cd, Cr, Ni, Pb, Se, Zn
Edited by I.K. O’Neill, P. Schuller and L. Fishbein
1986; 485 pages (out of print)

Edited by I. Kemp, P. Boyle, M. Smans and C.S. Muir
1985; 285 pages (out of print)

No. 73 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Antineoplastic Agents
Edited by M. Castegnaro et al.
1985; 163 pages £12.50

No. 74 Tobacco: A Major International Health Hazard
Edited by D. Zaridze and R. Peto
1986; 324 pages £22.50

No. 75 Cancer Occurrence in Developing Countries
Edited by D.M. Parkin
1986; 339 pages £22.50

No. 76 Screening for Cancer of the Uterine Cervix
Edited by M. Hakama, A.B. Miller and N.E. Day
1986; 315 pages £30.00
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Edited by C.R. Morris and J.R.P. Cabral</td>
<td>Edited by L. Fishbein and I.K. O'Neill</td>
<td>1986; 668 pages (out of print)</td>
<td>1988; 327 pages £40.00</td>
</tr>
<tr>
<td>No. 78</td>
<td>Carcinogenicity of Alkylation Cytostatic Drugs</td>
<td>No. 86</td>
<td>Directory of On-going Research in Cancer Epidemiology 1987</td>
</tr>
<tr>
<td>Edited by D. Schmähl and J.M. Kaldor</td>
<td>Edited by D.M. Parkin and J. Wahrendorf</td>
<td>1987; 676 pages (out of print)</td>
<td>1987; 676 pages (out of print)</td>
</tr>
<tr>
<td>By J.J. Gart, D. Krewski, P.N. Lee, R.E. Tarone and J. Wahrendorf</td>
<td>Edited by D.M. Parkin, C.A. Stiller, C.A. Bieber, G.J. Draper, B. Terracini and J.L. Young</td>
<td>1988; 401 pages £35.00</td>
<td>1988; 401 pages £35.00</td>
</tr>
<tr>
<td>No. 80</td>
<td>Directory of On-going Research in Cancer Epidemiology 1986</td>
<td>No. 88</td>
<td>Cancer Incidence in Five Continents Volume V</td>
</tr>
<tr>
<td>Edited by C.S. Muir and G. Wagner</td>
<td>Edited by C. Muir, J. Waterhouse, T. Mack, J. Powell and S. Whelan</td>
<td>1987; 1004 pages £55.00</td>
<td>1987; 1004 pages £55.00</td>
</tr>
<tr>
<td>No. 81</td>
<td>Environmental Carcinogens: Methods of Analysis and Exposure Measurement. Volume 9: Passive Smoking</td>
<td>No. 89</td>
<td>Method for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention</td>
</tr>
<tr>
<td>No. 82</td>
<td>Statistical Methods in Cancer Research. Volume II: The Design and Analysis of Cohort Studies</td>
<td>No. 90</td>
<td>Non-occupational Exposure to Mineral Fibres</td>
</tr>
<tr>
<td>By N.E. Breslow and N.E. Day</td>
<td>Edited by J. Bignon, J. Peto and R. Saracci</td>
<td>1989; 500 pages £50.00</td>
<td>1989; 500 pages £50.00</td>
</tr>
<tr>
<td>No. 84</td>
<td>The Relevance of N-Nitroso Compounds to Human Cancer: Exposure and Mechanisms</td>
<td>No. 92</td>
<td>Cell Differentiation, Genes and Cancer</td>
</tr>
<tr>
<td>No. 86</td>
<td>Directory of On-going Research in Cancer Epidemiology 1987</td>
<td>No. 94</td>
<td>Human Papillomavirus and Cervical Cancer</td>
</tr>
<tr>
<td>No. 87</td>
<td>International Incidence of Childhood Cancer</td>
<td>No. 95</td>
<td>Cancer Registration: Principles and Methods</td>
</tr>
<tr>
<td>No. 90</td>
<td>Perinatal and Multigeneration Carcinogenesis</td>
<td>No. 96</td>
<td>Cancer Incidence in Jewish Migrants to Israel, 1961–1981</td>
</tr>
<tr>
<td>No. 100</td>
<td>Cancer: Causes, Occurrence and Control</td>
<td>No. 97</td>
<td>Occupational Exposure to Silica and Cancer Risk</td>
</tr>
<tr>
<td>No. 99</td>
<td>No. 101 Directory of On-going Research in Cancer Epidemiology 1989/90</td>
<td>No. 100</td>
<td>Cancer: Causes, Occurrence and Control</td>
</tr>
<tr>
<td>No. 101 Directory of On-going Research in Cancer Epidemiology 1989/90</td>
<td>No. 100 Cancer: Causes, Occurrence and Control Editor-in-Chief L. Tomatis</td>
<td>1990; 352 pages £24.00</td>
<td>1990; 352 pages £24.00</td>
</tr>
</tbody>
</table>

List of IARC Publications

No. 77 Hexachlorobenzene: Proceedings of an International Symposium
Edited by C.R. Morris and J.R.P. Cabral
1986; 668 pages (out of print)

No. 78 Carcinogenicity of Alkylation Cytostatic Drugs
Edited by D. Schmähl and J.M. Kaldor
1986; 337 pages (out of print)

By J.J. Gart, D. Krewski, P.N. Lee, R.E. Tarone and J. Wahrendorf
1986; 213 pages £22.00

No. 80 Directory of On-going Research in Cancer Epidemiology 1986
Edited by C.S. Muir and G. Wagner
1986; 805 pages (out of print)

No. 81 Environmental Carcinogens: Methods of Analysis and Exposure Measurement. Volume 9: Passive Smoking
Edited by I.K. O'Neill, K.D. Brunnemann, B. Dodet and D. Hoffmann
1987; 383 pages £35.00

No. 82 Statistical Methods in Cancer Research. Volume II: The Design and Analysis of Cohort Studies
By N.E. Breslow and N.E. Day
1987; 404 pages £35.00

No. 83 Long-term and Short-term Assays for Carcinogens: A Critical Appraisal
Edited by R. Montesano, H. Bartsch, H. Vainio, J. Wilbourn and H. Yamazaki
1986; 575 pages £35.00

No. 84 The Relevance of N-Nitroso Compounds to Human Cancer: Exposure and Mechanisms
Edited by H. Bartsch, I.K. O'Neill and R. Schulte-Hermann
1987; 671 pages (out of print)

No. 85 Environmental Carcinogens: Methods of Analysis and Exposure Measurement. Volume 10: Benzene and Alkylated Benzenes
Edited by L. Fishbein and I.K. O'Neill
1988; 327 pages £40.00

No. 86 Directory of On-going Research in Cancer Epidemiology 1987
Edited by D.M. Parkin and J. Wahrendorf
1987; 676 pages (out of print)

No. 87 International Incidence of Childhood Cancer
Edited by D.M. Parkin, C.A. Stiller, C.A. Bieber, G.J. Draper, B. Terracini and J.L. Young
1988; 401 pages £35.00

No. 88 Cancer Incidence in Five Continents Volume V
Edited by C. Muir, J. Waterhouse, T. Mack, J. Powell and S. Whelan
1987; 1004 pages £55.00

No. 89 Method for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention
Edited by H. Bartsch, K. Hemminki and I.K. O'Neill
1988; 518 pages £50.00

No. 90 Non-occupational Exposure to Mineral Fibres
Edited by J. Bignon, J. Peto and R. Saracci
1989; 500 pages £50.00

No. 91 Trends in Cancer Incidence in Singapore 1968–1982
Edited by H.P. Lee, N.E. Day and K. Shanmugaratnam
1988; 160 pages (out of print)

No. 92 Cell Differentiation, Genes and Cancer
Edited by T. Kakunaga, T. Sugimura, L. Tomatis and H. Yamazaki
1988; 204 pages £27.50

No. 93 Directory of On-going Research in Cancer Epidemiology 1988
Edited by M. Coleman and J. Wahrendorf
1988; 662 pages (out of print)

No. 94 Human Papillomavirus and Cervical Cancer
Edited by N. Muñoz, F.X. Bosch and O.M. Jensen
1989; 154 pages £22.50

No. 95 Cancer Registration: Principles and Methods
Edited by O.M. Jensen, D.M. Parkin, R. MacLennan, C.S. Muir and R. Skeet
1991; 288 pages £28.00

No. 96 Perinatal and Multigeneration Carcinogenesis
Edited by N.P. Napalkov, J.M. Rice, L. Tomatis and H. Yamazaki
1989; 436 pages £50.00

No. 97 Occupational Exposure to Silica and Cancer Risk
Edited by L. Simonato, A.C. Fletcher, R. Saracci and T. Thomas
1990; 124 pages £22.50

No. 98 Cancer Incidence in Jewish Migrants to Israel, 1961–1981
Edited by R. Steinitz, D.M. Parkin, J.L. Young, C.A. Bieber and L. Katz
1989; 320 pages £35.00

No. 99 Pathology of Tumours in Laboratory Animals, Second Edition, Volume I, Tumours of the Rat
Edited by V.S. Turosow and U. Mohr
1984; 740 pages £85.00

No. 100 Cancer: Causes, Occurrence and Control
Edited-in-Chief L. Tomatis
1990; 352 pages £24.00

No. 101 Directory of On-going Research in Cancer Epidemiology 1989/90
Edited by M. Coleman and J. Wahrendorf
1989; 818 pages £36.00
List of IARC Publications

No. 102 Patterns of Cancer in Five Continents
Edited by S.L. Whelan and D.M. Parkin
1990; 162 pages £25.00

No. 103 Evaluating Effectiveness of Primary Prevention of Cancer
Edited by M. Hakama, V. Beral, J.W. Cullen and D.M. Parkin
1990; 250 pages £32.00

No. 104 Complex Mixtures and Cancer Risk
Edited by H. Vainio, M. Sorsa and A.J. McMichael
1990; 442 pages £38.00

No. 105 Relevance to Human Cancer of N-Nitroso Compounds, Tobacco Smoke and Mycotoxins
Edited by I.K. O’Neill, J. Chen and H. Bartsch
1991; 614 pages £70.00

No. 106 Atlas of Cancer Incidence in the Former German Democratic Republic
Edited by W.H. Mehnert, M. Smans, C.S. Muir, M. Möhner & D. Schön
1992; 384 pages £55.00

No. 107 Atlas of Cancer Mortality in the European Economic Community
Edited by M. Smans, C.S. Muir and P. Boyle
Publ. due 1992; 280 pages £35.00

No. 108 Environmental Carcinogens: Methods of Analysis and Exposure Measurement, Volume 11: Polychlorinated Dioxins and Dibenzofurans
Edited by C. Rappe, H.R. Buser, B. Dodet and I.K. O’Neill
1991; 426 pages £45.00

No. 109 Environmental Carcinogens: Methods of Analysis and Exposure Measurement, Volume 12: Indoor Air Contaminants
Edited by B. Seifert, B. Dodet and I.K. O’Neill
Publ. due 1992; approx. 400 pages

No. 110 Directory of On-going Research in Cancer Epidemiology 1991
Edited by M. Coleman and J. Wahrendorf
1991; 753 pages £38.00

No. 111 Pathology of Tumours in Laboratory Animals, Second Edition, Volume 2, Tumours of the Mouse
Edited by V.S. Turusov and U. Mohr
Publ. due 1993; approx. 500 pages

No. 112 Autopsy in Epidemiology and Medical Research
Edited by E. Riboli and M. Delendi
1991; 288 pages £25.00

No. 113 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Mycotoxins
1991; 64 pages £11.00

No. 114 Laboratory Decontamination and Destruction of Carcinogens in Laboratory Wastes: Some Polycyclic Heterocyclic Hydrocarbons
1991; 50 pages £8.00

No. 115 Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours
Edited by M. Castegnaro, R. Plestina, G. Dirheimer, I.N. Chernozemsky and H Bartsch
1991; 340 pages £45.00

No. 116 Mechanisms of Carcinogenesis in Risk Identification
Edited by H. Vainio, P.N. Magee, D.B. McGregor & A.J. McMichael
1992; 616 pages £65.00

No. 117 Directory of On-going Research in Cancer Epidemiology 1992
Edited by M. Coleman, J. Wahrendorf & E. Démaret
1992; 773 pages £42.00

No. 118 Cadmium in the Human Environment: Toxicity and Carcinogenicity
Edited by G.F. Nordberg, R.F.M. Herber & L. Alessio
Publ. due 1992; approx. 450 pages

No. 119 The Epidemiology of Cervical Cancer and Human Papillomavirus
Edited by N. Muñoz, F.X. Bosch, K.V. Shah & A. Meheus
1992; 288 pages £28.00

No. 120 Cancer Incidence in Five Continents, Volume VI
1992; 1050 pages £120.00

No. 122 International Classification of Rodent Tumours. Part 1. The Rat
Editor-in-Chief: U. Möhr
1992/93, 10 fascicles, approx. 600 pages, £120.00
List of IARC Publications

IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS
(Available from booksellers through the network of WHO Sales Agents)

Volume 1 Some Inorganic Substances, Chlorinated Hydrocarbons, Aromatic Amines, N-Nitroso Compounds, and Natural Products 1972; 184 pages (out of print)

Volume 2 Some Inorganic and Organometallic Compounds 1973; 181 pages (out of print)

Volume 3 Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds 1973; 271 pages (out of print)

Volume 4 Some Aromatic Amines, Hydrazine and Related Substances, N-Nitroso Compounds and Miscellaneous Alkylating Agents 1974; 286 pages Sw. fr. 18.

Volume 5 Some Organochlorine Pesticides 1974; 241 pages (out of print)

Volume 6 Sex Hormones 1974; 243 pages (out of print)

Volume 7 Some Anti-Thyroid and Related Substances, Nitrofurans and Industrial Chemicals 1974; 326 pages (out of print)

Volume 8 Some Aromatic Azo Compounds 1975; 357 pages Sw. fr. 36.

Volume 9 Some Aziridines, N-, S- and O-Mustards and Selenium 1975; 268 pages Sw. fr. 27.

Volume 10 Some Naturally Occurring Substances 1976; 353 pages (out of print)

Volume 11 Cadmium, Nickel, Some Epoxides, Miscellaneous Industrial Chemicals and General Considerations on Volatile Anaesthetics 1976; 306 pages (out of print)

Volume 12 Some Carbamates, Thiocarbamates and Carbazides 1976; 282 pages Sw. fr. 34.-

Volume 14 Asbestos 1977; 106 pages (out of print)

Volume 15 Some Fumigants, The Herbicides 2,4-D and 2,4,5-T, Chlorinated Dibenzoazines and Miscellaneous Industrial Chemicals 1977; 354 pages Sw. fr. 50.

Volume 17 Some N-Nitroso Compounds 1978; 365 pages Sw. fr. 50.

Volume 19 Some Monomers, Plastics and Synthetic Elastomers, and Acrolein 1979; 513 pages (out of print)

Volume 20 Some Halogenated Hydrocarbons 1979; 609 pages (out of print)

Volume 21 Sex Hormones (II) 1979; 583 pages Sw. fr. 60.

Volume 22 Some Non-Nutritive Sweetening Agents 1980; 208 pages Sw. fr. 25.

Volume 23 Some Metals and Metallic Compounds 1980; 438 pages (out of print)

Volume 25 Wood, Leather and Some Associated Industries 1981; 412 pages Sw. fr. 60

Volume 28 The Rubber Industry 1982; 486 pages Sw. fr. 70.

Volume 29 Some Industrial Chemicals and Dyes 1982; 416 pages Sw. fr. 60.

Volume 30 Miscellaneous Pesticides 1983; 424 pages Sw. fr. 60.

Volume 31 Some Food Additives, Feed Additives and Naturally Occurring Substances 1983; 314 pages Sw. fr. 60

List of IARC Publications

IARC TECHNICAL REPORTS*
No. 1 Cancer in Costa Rica
Edited by R. Sierra,
R. Barrantes, G. Muñoz Leiva, D.M. Parkin, C.A. Bieber and
N. Muñoz Calero
1988; 124 pages Sw. fr. 30.-
No. 2 SEARCH: A Computer Package to Assist the Statistical Analysis of Case-control Studies
Edited by G.J. Macfarlane, P. Boyle and P. Maisonneuve
1991; 80 pages (out of print)
No. 3 Cancer Registration in the European Economic Community
Edited by M.P. Coleman and E. Démaret
1988; 188 pages Sw. fr. 30.-
No. 4 Diet, Hormones and Cancer: Methodological Issues for Prospective Studies
Edited by E. Riboli and R. Saracci
1988; 156 pages Sw. fr. 30.-
No. 5 Cancer in the Philippines
Edited by A.V. Laudico, D. Esteban and D.M. Parkin
1989; 186 pages Sw. fr. 30.-
No. 6 La genèse du Centre International de Recherche sur le Cancer
Par R. Sohier et A.G.B. Sutherland
1990; 104 pages Sw. fr. 30.-
No. 7 Epidémiologie du cancer dans les pays de langue latine
1990; 310 pages Sw. fr. 30.-
No. 8 Comparative Study of Anti-smoking Legislation in Countries of the European Economic Community
Edited by A. Sasco, P. Dalla Vorgia and P. Van der Elst
1990; 82 pages Sw. fr. 30.-
No. 9 Epidémiologie du cancer dans les pays de langue latine
1991; 346 pages Sw. fr. 30.-
No. 10 Nitroso Compounds: Biological Mechanisms, Exposures and Cancer Etiology
Edited by I.K. O'Neill & H. Bartsch
1992; 149 pages Sw. fr. 30.-
No. 11 Nitroso Compounds: Biological Mechanisms, Exposures and Cancer Etiology
Edited by I.K. O'Neill & H. Bartsch
1992; 149 pages Sw. fr. 30.-
No. 12 Epidémiologie du cancer dans les pays de langue latine
1992; 375 pages Sw. fr. 30.-
DIRECTORY OF AGENTS BEING TESTED FOR CARCINOGENICITY (Until Vol. 13 Information Bulletin on the Survey of Chemicals Being Tested for Carcinogenicity)*
No. 8 Edited by M.-J. Ghess, H. Bartsch and L. Tomatis
1979; 604 pages Sw. fr. 40.-
No. 9 Edited by M.-J. Ghess, J.D. Wilbourn, H. Bartsch and L. Tomatis
1981; 294 pages Sw. fr. 41.-
No. 10 Edited by M.-J. Ghess, J.D. Wilbourn and H. Bartsch
1982; 362 pages Sw. fr. 42.-
No. 11 Edited by M.-J. Ghess, J.D. Wilbourn, H. Vainio and H. Bartsch
1984; 362 pages Sw. fr. 50.-
No. 12 Edited by M.-J. Ghess, J.D. Wilbourn, A. Tossavainen and H. Vainio
1986; 385 pages Sw. fr. 50.-
No. 13 Edited by M.-J. Ghess, J.D. Wilbourn and A. Aitio 1988;
404 pages Sw. fr. 43.-
No. 14 Edited by M.-J. Ghess, J.D. Wilbourn and H. Vainio
1990; 370 pages Sw. fr. 45.-
No. 15 Edited by M.-J. Ghess, J.D. Wilbourn and H. Vainio
1992; 318 pages Sw. fr. 45.-
NON-SERIAL PUBLICATIONS †
Alcool et Cancer
By A. Tuyns (in French only)
1978; 42 pages Fr. fr. 35.-
Cancer Morbidity and Causes of Death Among Danish Brewery Workers
By O.M. Jensen
1980; 143 pages Fr. fr. 75.-
Directory of Computer Systems Used in Cancer Registries
By H.R. Menck and D.M. Parkin
1986; 236 pages Fr. fr. 50.-

* Available from booksellers through the network of WHO Sales agents.
† Available directly from IARC