NICKEL AND NICKEL COMPOUNDS

1. Exposure Data

1.1 Identification of the agents

Synonyms, trade names, and molecular formulae for nickel, nickel alloys, and selected nickel compounds are presented in Table 1.1. This list is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-containing substances, but it is indicative of the range of nickel alloys and compounds available, including some compounds that are important commercially, and those that have been tested in biological systems. Several intermediary compounds occur in refineries that cannot be characterized, and are thus not listed.

1.2 Chemical and physical properties of the agents

Nickel (atomic number, 28; atomic weight, 58.69) is a metal, which belongs to group VIIIB of the periodic table. The most important oxidation state of nickel is +2, although the +3 and +4 oxidation states are also known (Tundermann et al., 2005). Nickel resembles iron, cobalt, and copper in its chemical properties. However, unlike cobalt and iron, it is normally only stable in aqueous solution in the + 2 oxidation state (Kerfoot, 2002). Selected chemical and physical properties for nickel and nickel compounds, including solubility data, were presented in the previous IARC Monograph (IARC, 1990), and have been reported elsewhere (ATSDR, 2005).

1.3 Use of the agents

The chemical properties of nickel (i.e. hardness, high melting point, ductility, malleability, somewhat ferromagnetic, fair conductor of heat and electricity) make it suitable to be combined with other elements to form many alloys (NTP, 2000; Tundermann et al., 2005). It imparts such desirable properties as corrosion resistance, heat resistance, hardness, and strength.

Nickel salts are used in electroplating, ceramics, pigments, and as intermediates (e.g. catalysts, formation of other nickel compounds). Sinter nickel oxide is used in nickel catalysts in the ceramics industry, in the manufacture of alloy steel and stainless steel, in the manufacture of nickel salts for specialty ceramics, and in the manufacture of nickel–cadmium (Ni–Cd) batteries, and nickel–metal-hydride batteries. Nickel sulfide is used as a catalyst in
Table 1.1 Chemical names (CAS names are given in italics), synonyms, and molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS Reg. No.</th>
<th>Synonyms</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic nickel and nickel alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>7440-02-0</td>
<td>C.I. 77775; Nickel element</td>
<td>Ni</td>
</tr>
<tr>
<td>Ferronickel</td>
<td>11133-76-9</td>
<td>Iron alloy (base), Fe, Ni; nickel alloy (nonbase) Fe, Ni</td>
<td>Fe, Ni</td>
</tr>
<tr>
<td>Nickel aluminium alloys</td>
<td>61431-86-5, 37187-84-1</td>
<td>Raney nickel; Raney alloy</td>
<td>NiAl</td>
</tr>
<tr>
<td>Nickel oxides and hydroxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel hydroxide (amorphous)</td>
<td>12054-48-7, (11113-74-9)</td>
<td>Nickel dihydroxide; nickel (II) hydroxide; nickel (2+) hydroxide; nickel hydroxide (Ni(OH)2); nickelous hydroxide</td>
<td>Ni(OH)2</td>
</tr>
<tr>
<td>Nickel monoxide</td>
<td>1313-99-1, 11099-02-8, 34492-97-2</td>
<td>Black nickel oxide; green nickel oxide; mononickel oxide; nickel monoxide; nickelous oxide; nickel oxide (NiO); nickel (II) oxide; nickel (2+) oxide</td>
<td>NiO</td>
</tr>
<tr>
<td>Nickel trioxide</td>
<td>1314-06-3, (34492-97-2)</td>
<td>Black nickel oxided; dinickel trioxide; nickelic oxide; nickel oxide; nickel (III) oxide; nickel oxide (Ni2O3); nickel peroxide; nickel sesquioxide</td>
<td>Ni2O3</td>
</tr>
<tr>
<td>Nickel sulfides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel sulfide</td>
<td>12035-51-7, 12035-50-6</td>
<td>Nickel sulfide (NiS)</td>
<td>NiS</td>
</tr>
<tr>
<td>Nickel sulfide (amorphous)</td>
<td>16812-54-7, (11113-75-0)</td>
<td>Mononickel monosulfide; nickel mono-sulfide; nickel monosulfide (NiS); nickelous sulfide; nickel (II) sulfide; nickel (2+) sulfide;</td>
<td>NiS</td>
</tr>
<tr>
<td>Nickel sulfide (amorphous)</td>
<td>1314-04-1, (61026-96-8)</td>
<td>Nickel sulfide (NiS)</td>
<td>NiS</td>
</tr>
<tr>
<td>Nickel subsulfide</td>
<td>12035-72-2, 12035-71-1</td>
<td>Nickel sesquisulfide; nickel subsulfide (Ni,S); nickel sulfide (Ni,S); trinickel disulfide</td>
<td>Ni3S2</td>
</tr>
<tr>
<td>Pentlandite</td>
<td>53809-86-2, 12174-14-0</td>
<td>Pentlandite (Fe3Ni,S6); Heazlewoodite (Ni,S); Khizlevudite</td>
<td>Fe9Ni9S16 (Fe0.4-0.6Ni0.4-0.6)S6</td>
</tr>
<tr>
<td>Chemical name</td>
<td>CAS Reg. No.</td>
<td>Synonyms</td>
<td>Formula</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Nickel salts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel carbonate</td>
<td>3333-67-3</td>
<td>Carbonic acid, nickel (2+) salt (1:1); nickel carbonate (1:1); nickel (II) carbonate; nickel (2+) carbonate; nickel carbonate (NiCO₃); nickel (2+) carbonate (NiCO₃); nickel mononcarbonate; nickelous carbonate</td>
<td>NiCO₃</td>
</tr>
<tr>
<td>Basic nickel carbonates</td>
<td>12607-70-4</td>
<td>Carbonic acid, nickel salt, basic; nickel carbonate hydroxide (Ni, (CO)(OH)); nickel, (carbonato(2-)) tetrahydroxyster; Nickel bis(carbonato(2-)) hexahydroxypenta; nickel hydroxycarbonate</td>
<td>NiCO₃·2Ni(OH)₂</td>
</tr>
<tr>
<td>Nickel acetate</td>
<td>373-02-4</td>
<td>Acetic acid, nickel (2+) salt; nickel (II) acetate; nickel (2+) acetate; nickel diacetate; nickelous acetate</td>
<td>Ni(OOCCH₃)₂</td>
</tr>
<tr>
<td>Nickel acetate tetrahydrate</td>
<td>6018-89-9</td>
<td>Acetic acid, nickel (+2) salt, tetrahydrate</td>
<td>Ni(OOCCH₃)₂·4H₂O</td>
</tr>
<tr>
<td>Nickel ammonium sulfates</td>
<td>15-699-18-0</td>
<td>Ammonium nickel sulfate ((NH₄)₂Ni(SO₄)₂); nickel ammonium sulfate (Ni(NH₄)₂(SO₄)₂); sulfuric acid, ammonium nickel (2+) salt (2:2:1)</td>
<td>Ni(NH₄)₂(SO₄)₂</td>
</tr>
<tr>
<td>Nickel ammonium sulfate</td>
<td>25749-08-0</td>
<td>Ammonium nickel sulfate ((NH₄)₂Ni₂(SO₄)₂); sulfuric acid, ammonium nickel (2+) salt (3:2:2)</td>
<td>Ni₂(NH₄)₂(SO₄)₃</td>
</tr>
<tr>
<td>hexahydrate</td>
<td>7785-20-8</td>
<td>Ammonium nickel (2+) sulfate hexahydrate; ammonium nickel sulfate ((NH₄)₂Ni(SO₄)₂); diammonium nickel disulfate hexahydrate; diammonium nickel (2+) disulfate hexahydrate; nickel ammonium sulfate (Ni(NH₄)₂(SO₄)₂) hexahydrate; nickel diammonium disulfate hexahydrate; sulfuric acid, ammonium nickel (2+) salt (2:2:1), hexahydrate</td>
<td>Ni(NH₄)₂(SO₄)₂·6H₂O</td>
</tr>
<tr>
<td>Nickel chromate</td>
<td>14721-18-7</td>
<td>Chromium nickel oxide (NiCrO₃); nickel chromate (NiCrO₃); nickel chromium oxide (NiCrO₃)</td>
<td>NiCrO₃</td>
</tr>
<tr>
<td>Nickel chloride</td>
<td>7718-54-9</td>
<td>Nickel (II) chloride; nickel (2+) chloride; nickel chloride (NiCl₂); nickel dichloride; nickel dichloride (NiCl₂); nickelous chloride</td>
<td>NiCl₂</td>
</tr>
<tr>
<td>Nickel chloride hexahydrate</td>
<td>7791-20-0</td>
<td>Nickel chloride (NiCl₂) hexahydrate</td>
<td>NiCl₂·6H₂O</td>
</tr>
<tr>
<td>Nickel nitrate hexahydrate</td>
<td>13478-00-7</td>
<td>Nickel (2+) bis(nitrate)hexahydrate; nickel dinitrate hexahydrate; nickel (II) nitrate hexahydrate; nickel nitrate (Ni(NO₃)₂) hexahydrate; nickelous nitrate hexahydrate; nitric acid, nickel (2+) salt, hexahydrate</td>
<td>Ni(NO₃)₂·6H₂O</td>
</tr>
<tr>
<td>Nickel sulfate</td>
<td>7786-81-4</td>
<td>Nickel monosulfate; nickelous sulfate; nickel sulfate (1:1); nickel (II) sulfate; nickel (2+) sulfate; nickel (2+) sulfate (1:1); nickel sulfate (NiSO₄); sulfuric acid, nickel (2+) salt (1:1)</td>
<td>NiSO₄</td>
</tr>
<tr>
<td>Nickel sulfate hexahydrate</td>
<td>10101-97-0</td>
<td>Sulfuric acid, nickel (2+) salt (1:1), hexahydrate</td>
<td>NiSO₄·6H₂O</td>
</tr>
<tr>
<td>Nickel sulfate heptahydrate</td>
<td>10101-98-1</td>
<td>Sulfuric acid, nickel (2+) salt (1:1), heptahydrate</td>
<td>NiSO₄·7H₂O</td>
</tr>
</tbody>
</table>
Table 1.1 (continued)

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS Reg. No.</th>
<th>Synonyms</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other nickel compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel carbonyl</td>
<td>13463-39-3</td>
<td>Nickel carbonyl (Ni(CO)_4); nickel tetracarbonyl; tetracarbonylnickel; tetracarbonylnickel (0); Ni(CO)_4</td>
<td></td>
</tr>
<tr>
<td>Nickel antimonide</td>
<td>12035-52-8</td>
<td>Antimony compound with nickel (1:1); nickel antimonide (NiSb); nickel compound with antimony (1:1); nickel monoantimonide</td>
<td>NiSb</td>
</tr>
<tr>
<td>Nickel antimonide</td>
<td>12125-61-0</td>
<td>Breithauptite (SbNi)</td>
<td></td>
</tr>
<tr>
<td>Nickel arsenides</td>
<td>27016-75-7</td>
<td>Nickel arsenide (NiAs)</td>
<td>NiAs</td>
</tr>
<tr>
<td>Nickel arsenides</td>
<td>1303-13-5</td>
<td>Nickeline; nickeline (NiAs); niccolite</td>
<td>NiAs</td>
</tr>
<tr>
<td>Nickel arsenides</td>
<td>12256-33-6</td>
<td>Nickel arsenide (Ni$_{11}$As$_8$); nickel arsenide tetragonal</td>
<td>Ni$_{11}$As$_8$</td>
</tr>
<tr>
<td>Nickel arsenides</td>
<td>12044-65-4</td>
<td>Maucherite (Ni$_{11}$As$_8$); Placodine; Temiskamite</td>
<td>Ni$_{11}$As$_8$</td>
</tr>
<tr>
<td>Nickel arsenides</td>
<td>12255-80-0</td>
<td>Nickel arsenide (Ni$_3$As$_2$); nickel arsenide hexagonal</td>
<td>Ni$_3$As$_2$</td>
</tr>
<tr>
<td>Nickel selenide</td>
<td>1314-05-2</td>
<td>Nickel monoselenide; nickel selenide (NiSe)</td>
<td>NiSe</td>
</tr>
<tr>
<td>Nickel subselenide</td>
<td>12201-85-3</td>
<td>Maekinenite; Makinenite (NiSe)</td>
<td>NiSe</td>
</tr>
<tr>
<td>Nickel sulfarsenide</td>
<td>12137-13-2</td>
<td>Nickel selenide (Ni$_5$Se$_3$)</td>
<td>Ni$_5$Se$_3$</td>
</tr>
<tr>
<td>Nickel sulfarsenide</td>
<td>12255-10-6</td>
<td>Nickel arsenide sulphide (NiAsS)</td>
<td>NiAsS</td>
</tr>
<tr>
<td>Nickel sulfarsenide</td>
<td>12255-11-7</td>
<td>Gersdorffite (NiAsS)</td>
<td>NiAsS</td>
</tr>
<tr>
<td>Nickel telluride</td>
<td>12142-88-0</td>
<td>Nickel monotelluride; nickel telluride (NiTe)</td>
<td>NiTe</td>
</tr>
<tr>
<td>Nickel telluride</td>
<td>24270-51-7</td>
<td>Imgreite (NiTe)</td>
<td>NiTe</td>
</tr>
<tr>
<td>Nickel titanate</td>
<td>12035-39-1</td>
<td>Nickel titanate(IV); nickel titanate (Ni-TiO$_3$); nickel titanium oxide (NiTiO$_3$); nickel titanium trioxide</td>
<td>NiTiO$_3$</td>
</tr>
<tr>
<td>Chrome iron nickel black spinel</td>
<td>71631-15-7</td>
<td>CI: 77 504; CI Pigment Black 30; nickel iron chromite black spinel</td>
<td>(Ni,Fe)(CrFe)$_2$O$_4$ NS</td>
</tr>
<tr>
<td>Nickel ferrite brown spinel</td>
<td>68187-10-0</td>
<td>CI Pigment Brown 34</td>
<td>NiFe$_2$O$_4$</td>
</tr>
<tr>
<td>Nickelocene</td>
<td>1271-28-9</td>
<td>Bis(η5-2,4-cyclopentadien-1-yl)nickel; di-π-cyclopentadieninickel; dicyclopentadienyl-nickel; bis(η5-2,4-cyclopentadien-1-yl)-nickel</td>
<td>π-(C5H$_5$)2Ni</td>
</tr>
</tbody>
</table>

* In commercial usage, ‘black nickel oxide’ usually refers to the low-temperature crystalline form of nickel monoxide, but nickel trioxide (Ni_2O_3), an unstable oxide of nickel, may also be called ‘black nickel oxide’.
the petrochemical industry or as an intermediate in the metallurgical industry.

According to the US Geological Survey, world use of primary nickel in 2006 was 1.40 million tonnes, a 12% increase over 2005. Stainless steel manufacture accounted for more than 60% of primary nickel consumption in 2006 (USGS, 2008). Of the 231000 tonnes of primary nickel consumed in the USA in 2007, approximately 52% was used in stainless and alloy steel production, 34% in non-ferrous alloys and superalloys, 10% in electroplating, and 4% in other uses. End uses of nickel in the USA in 2007 were as follows: transportation, 30%; chemical industry, 15%; electrical equipment, 10%; construction, 9%; fabricated metal products, 8%; household appliances, 8%; petroleum industry, 7%; machinery, 6%; and others, 7% (Kuck, 2008).

1.3.1 Metallic nickel and nickel alloys

Pure nickel metal is used to prepare nickel alloys (including steels). It is used as such for plating, electroforming, coinage, electrical components, tanks, catalysts, battery plates, sintered components, magnets, and welding rods. Ferronickel is used to prepare steels. Stainless and heat-resistant steels accounted for 93% of its end-use in 1986. Nickel-containing steels with low nickel content (< 5%) are used in construction and tool fabrication. Stainless steels are used in general engineering equipment, chemical equipment, domestic applications, hospital equipment, food processing, architectural panels and fasteners, pollution-control equipment, cryogenic uses, automotive parts, and engine components (IARC, 1990).

Nickel alloys are often divided into categories depending on the primary metal with which they are alloyed (e.g. iron, copper, molybdenum, chromium) and their nickel content. Nickel is alloyed with iron to produce alloy steels (containing 0.3–5% nickel), stainless steels (containing as much as 25–30% nickel, although 8–10% nickel is more typical), and cast irons. Nickel–copper alloys (e.g. Monel alloys) are used for coinage (25% nickel, 75% copper), industrial plumbing (e.g. piping and valves), marine equipment, petrochemical equipment, heat exchangers, condenser tubes, pumps, electrodes for welding, architectural trim, thermocouples, desalination plants, ship propellers, etc. Nickel–chromium alloys (e.g. Nichrome) are used in many applications that require resistance to high temperatures such as heating elements, furnaces, jet engine parts, and reaction vessels. Molybdenum-containing nickel alloys and nickel–iron–chromium alloys (e.g. Inconel) provide strength and corrosion resistance over a wide temperature range, and are used in nuclear and fossil-fuel steam generators, food-processing equipment, and chemical-processing and heat-treating equipment. Hastelloy alloys (which contain nickel, chromium, iron, and molybdenum) provide oxidation and corrosion resistance for use with acids and salts. Nickel-based super-alloys provide high-temperature strength and creep, and stress resistance for use in gas-turbine engines (ATSDR, 2005).

Other groups of nickel alloys are used according to their specific properties for acid-resistant equipment, heating elements for furnaces, low-expansion alloys, cryogenic uses, storage of liquefied gases, high-magnetic-permeability alloys, and surgical implant prostheses.

1.3.2 Nickel oxides and hydroxides

The nickel oxide sinters are used in the manufacture of alloy steels and stainless steels.

Green nickel oxide is a finely divided, relatively pure form of nickel monoxide, produced by firing a mixture of nickel powder and water in air at 1000 °C (IARC, 1990). It is used to manufacture nickel catalysts and specialty ceramics (for porcelain enamelling of steel; in the manufacture of magnetic nickel-zinc ferrites used in electric motors, antennas and television tube yokes; and
as a colourant in glass and ceramic stains used in ceramic tiles, dishes, pottery, and sanitary ware).

Black nickel oxide is a finely divided, pure nickel monoxide, produced by calcination of nickel hydroxycarbonate or nickel nitrate at 600 °C; nickel trioxide (\(\text{Ni}_2\text{O}_3\)), an unstable oxide of nickel, may also be called 'black nickel oxide' (IARC, 1990). Black nickel oxide is used in the manufacture of nickel salts, specialty ceramics, and nickel catalysts (e.g. to enhance the activity of three-way catalysts containing rhodium, platinum, and palladium used in automobile exhaust control).

Nickel hydroxide is used as a catalyst intermediate, and in the manufacture of Ni–Cd batteries (Antonsen & Meshri, 2005).

1.3.3 Nickel sulfides

Nickel sulfide is used as a catalyst in petrochemical hydrogenation when high concentrations of sulfur are present in the distillates. The major use of nickel monosulfide is as an intermediate in the hydrometallurgical processing of silicate-oxide nickel ores (IARC, 1990). Nickel subsulfide is used as an intermediate in the primary nickel industry (ATSDR, 2005).

1.3.4 Nickel salts

Nickel acetate is used in electroplating, as an intermediate (e.g. as catalysts and in the formation of other nickel compounds), as a dye mordant, and as a sealer for anodized aluminium.

Nickel carbonate is used in the manufacture of nickel catalysts, pigments, and other nickel compounds (e.g. nickel oxide, nickel powder); in the preparation of coloured glass; and, as a neutralizing compound in nickel-electroplating solutions.

Nickel ammonium sulfate is used as a dye mordant, in metal-finishing compositions, and as an electrolyte for electroplating.

Nickel chloride is used as an intermediate in the manufacture of nickel catalysts, and to absorb ammonia in industrial gas masks.

Nickel nitrate hexahydrate is used as an intermediate in the manufacture of nickel catalysts and Ni–Cd batteries.

Nickel sulfate hexahydrate is used in nickel electroplating and nickel electrorefining, in ‘electroless’ nickel plating, and as an intermediate (in the manufacture of other nickel chemicals and catalysts) (Antonsen & Meshri, 2005).

1.3.5 Other nickel compounds

The primary use for nickel carbonyl is as an intermediate (in the production of highly pure nickel), as a catalyst in chemical synthesis, as a reactant in carbonylation reactions, in the vapour-plating of nickel, and in the fabrication of nickel and nickel alloy components and shapes.

Nickelocene is used as a catalyst and complexing agent, and nickel titanate is used as a pigment (Antonsen & Meshri, 2005).

No information was available to the Working Group on the use of nickel selenides or potassium nickelocyanate.

1.4 Environmental occurrence

Nickel and its compounds are naturally present in the earth’s crust, and are emitted to the atmosphere via natural sources (such as windblown dust, volcanic eruptions, vegetation forest fires, and meteoric dust) as well as from anthropogenic activities (e.g. mining, smelting, refining, manufacture of stainless steel and other nickel-containing alloys, fossil fuel combustion, and waste incineration). Estimates for the emission of nickel into the atmosphere from natural sources range from 8.5 million kg/year in the 1980s to 30 million kg/year in the early 1990s (ATSDR, 2005). The general population is exposed to low levels of nickel in ambient air, water, food, and through tobacco consumption.
1.4.1 Natural occurrence

Nickel is widely distributed in nature and is found in animals, plants, and soil (EVM, 2002). It is the 24th most abundant element, forming about 0.008% of the earth’s crust (0.01% in igneous rocks). The concentration of nickel in soil is approximately 79 ppm, with a range of 4–80 ppm (EVM, 2002; ATSDR, 2005).

1.4.2 Air

Nickel is emitted to the atmosphere from both natural and anthropogenic sources. It has been estimated that approximately 30000 tonnes of nickel may be emitted per year to the atmosphere from natural sources. The anthropogenic emission rate is estimated to be between 1.4–1.8 times higher than the natural emission rate.

The two main natural sources are volcanoes and windblown dust from rocks and soil, estimated to respectively contribute 14000 tonnes/year and 11000 tonnes/year (NTP, 2000; Barbante et al., 2002). Other relatively minor sources include: wild forest fires (2300 tonnes/year), sea salt spray (1300 tonnes/year), continental particulates (510 tonnes/year), marine (120 tonnes/year), and continental volatiles (100 tonnes/year) (Barbante et al., 2002).

Anthropogenic activities release nickel to the atmosphere, mainly in the form of aerosols (ATSDR, 2005). Fossil fuel combustion is reported to be the major contributor of atmospheric nickel in Europe and the world, accounting for 62% of anthropogenic emissions in the 1980s (Barbante et al., 2002; ATSDR, 2005). In 1999, an estimated 570000 tons of nickel were released from the combustion of fossil fuels worldwide (Rydh & Svärd, 2003). Of this, 326 tons were released from electric utilities (Leikauf, 2002). Of the other anthropogenic sources, nickel metal and refining accounted for 17% of total emissions, municipal incineration 12%, steel production 3%, other nickel-containing alloy production 2%, and coal combustion 2% (ATSDR, 2005).

Atmospheric nickel concentrations are higher in rural and urban air (concentration range: 5–35 ng/m³) than in remote areas (concentration range: 1–3 ng/m³) (WHO, 2007).

1.4.3 Water

Particulate nickel enters the aquatic environment from a variety of natural and anthropogenic sources. Natural sources include the weathering and dissolution of nickel-containing rocks and soil, disturbed soil, and atmospheric deposition. Anthropogenic sources include: industrial processes (e.g. mining and smelting operations), industrial waste water and effluent (e.g. tailings piles run-off), domestic waste water, and landfill leachate (NTP, 2000; ATSDR, 2005; WHO, 2007). Several factors influence the concentration of nickel in groundwater and surface water including: soil use, pH, and depth of sampling (WHO, 2007). Most nickel compounds are relatively water soluble at low pH (i.e. pH < 6.5). As a result, acid rain tends to increase the mobility of nickel in soil, which, in turn, has a corresponding impact on nickel concentrations in groundwater (NTP, 2000; WHO, 2007).

Based on measurement data from the 1980s, the following average nickel concentrations have been reported for groundwater, seawater and surface water, respectively: <20μg/L, 0.1–0.5μg/L, and 15–20 μg/L (NTP, 2000; ATSDR, 2005). Nickel concentrations as high as 980 μg/L have been measured in groundwater with pH < 6.2 (WHO, 2007). Levels of dissolved nickel ranging from <1–87 μg/L have been reported in urban storm run-off water samples (ATSDR, 2005).

Nickel concentrations in the range of 6–700 pg/g have been measured in high-altitude snow and ice near the summit of Mont Blanc on the French-Italian border. Seasonal variations were observed, with higher concentrations in the summer layers than in the winter layers.
Nickel levels appeared to be more associated with anthropogenic inputs (e.g. oil combustion from power generation, automobile and truck traffic) than with natural sources, such as rock and soil dust (Barbante et al., 2002).

1.4.4 Soil and sediments

Natural and anthropogenic sources (e.g. mining and smelting, coal fly ash, bottom ash, metal manufacturing waste, commercial waste, atmospheric fall-out and deposition, urban refuse, and sewage sludge) contribute to the levels of nickel found in soil and sediments (NTP, 2000; ATSDR, 2005). Of the nickel emitted to the environment, the largest releases are to the soil. In 2002, estimated releases of nickel and nickel compounds from manufacturing and processing facilities (required to report to the US Toxic Release Inventory Program) were approximately 5530 and 14800 metric tonnes, respectively—accounting for 82% and 87% of estimated total nickel releases to the environment (ATSDR, 2005).

In a study of urban soil quality, a harmonized sampling regime was used to compare concentrations of nickel in six European cities differing markedly in their climate and industrial history. The sites were as far as possible from current point sources of pollution, such as industrial emissions, but all were bordered by major roads, and are thus likely to have been affected by vehicle emissions. To assess the vertical distribution of soil parameters, two depths were sampled at each point: a surface sample at 0–10 cm and a subsurface sample at 10–20 cm. The surface sample mean nickel concentration was in the range of 11–207 mg/kg, and the corresponding mean concentration in the subsurface sample, 10–210 mg/kg (Madrid et al., 2006).

1.5 Human exposure

1.5.1 Exposure of the general population

Ingestion of nickel in food, and to a lesser degree in drinking-water, is the primary route of exposure for the non-smoking general population. Exposure may also occur via inhalation of ambient air and percutaneous absorption (NTP, 2000; ATSDR, 2005; WHO, 2007). The daily intake of nickel from food and beverages varies by foodstuff, by country, by age, and by gender (EVM, 2002; ATSDR, 2005). Data from a study in the USA give estimates of daily dietary intakes in the range of 101–162 μg/day for adults, 136–140 μg/day for males, and 107–109 μg/day for females. Estimates for pregnant and lactating women are higher with average daily intakes of 121 μg/day and 162 μg/day, respectively (ATSDR, 2005). Based on the concordance between different studies of dietary intake, diet is reported to contribute less than 0.2 mg/day (WHO, 2007).

Inhalation of nickel from ambient air is generally a minor route of exposure for the general population. The following daily intakes of nickel have been estimated: less than 0.05 μg/day in the USA; 0.42 μg/day (mean ambient concentration) and 15 μg/day (highest ambient concentration) in the Sudbury basin region in Ontario, Canada; and, 122 μg/day (based on the highest ambient reported nickel concentration) in the Copper Cliff region of Ontario, Canada. These estimates are based on a breathing rate of 20 m³/day, and nickel concentrations of 2.2 ng/m³, 21 ng/m³, 732 ng/m³, and 6100 ng/m³, respectively (ATSDR, 2005).

1.5.2 Occupational exposure

Nickel, in the form of various alloys and compounds, has been in widespread commercial use for over 100 years. Several million workers worldwide are exposed to airborne fumes, dusts and mists containing nickel and its compounds. Exposures by inhalation, ingestion or skin
Nickel and nickel compounds

contact occur in nickel-producing industries (e.g. mining, milling, smelting, and refining), as well as in nickel-using industries and operations (e.g. alloy and stainless steel manufacture; electroplating and electrowinning; welding, grinding and cutting). Insoluble nickel is the predominant exposure in nickel-producing industries, whereas soluble nickel is the predominant exposure in the nickel-using industries. Occupational exposure results in elevated levels of nickel in blood, urine and body tissues, with inhalation as the main route of uptake (IARC, 1990; NTP, 2000).

Estimates of the number of workers potentially exposed to nickel and nickel compounds have been developed by the National Institute of Occupational Safety and Health (NIOSH) in the USA and by CAREX (CARcinogen EXposure) in Europe. Based on the National Occupation Exposure Survey (NOES), conducted during 1981–1983, NIOSH estimated that 507681 workers, including 19673 female workers, were potentially exposed to ‘Ni, Nickel-MF Unknown’ (agent code: 50420) in the workplace (NIOSH, 1990). The following six industries accounted for nearly 60% of exposed workers: ‘fabricated metal products’ ($n = 69984$), ‘special trade contractors’ ($n = 55178$), ‘machinery, except electrical’ ($n = 55064$), ‘transportation equipment’ ($n = 44838$), ‘primary metal industries’ ($n = 39467$), and ‘auto repair, services, and garages’ ($n = 27686$). Based on occupational exposure to known and suspected carcinogens collected during 1990–1993, the CAREX database estimates that 547396 workers were exposed to nickel and nickel compounds in the European Union. Over 83% of these workers were employed in the ‘manufacture of fabricated metal products, except machinery and equipment’ ($n = 195597$), ‘manufacture of machinery, except electrical’ ($n = 122985$), ‘manufacture of transport equipment’ ($n = 64720$), ‘non-ferrous base metal industries’ ($n = 32168$), ‘iron and steel basic industries’ ($n = 26504$), and ‘metal ore mining’ ($n = 16459$). CAREX Canada (2011) estimates that approximately 50000 Canadians are exposed to nickel in the workplace (95% male). Exposed industries include: commercial/industrial machinery and equipment repair/maintenance; architectural, structural metals manufacturing; specialty trade contractors; boiler, tank and shipping container manufacturing; metal ore mining; motor vehicle parts manufacturing; machine shops, turned product, screw, nut and bolt manufacturing; coating, engraving, heat treating and allied activities; iron/steel mills and ferro-alloy manufacturing; non-ferrous metal production and processing.

Historically, metallic nickel exposures tended to be higher in nickel-producing industries than in the nickel-using industries, with estimates of historical mean levels of exposure to inhalable metallic nickel in the range of $0.01–6.0 \text{ mg/m}^3$ and $0.05–0.3 \text{ mg/m}^3$, respectively. However, data from the EU suggest that occasional higher exposures to inhalable metallic nickel may be present in certain industry sectors (Sivulka, 2005).

Data on early occupational exposures to nickel and nickel compounds were summarized in the previous IARC Monograph (IARC, 1990). Data from studies and reviews on nickel exposure published since the previous IARC Monograph are summarized below for both the nickel-producing and the nickel-using industries.

(a) Studies of nickel-producing industries

Ulrich et al. (1991) collected data on several indicators of nickel exposure (stationary and personal air sampling; urinary nickel excretion) among electrolytic nickel production workers in the Czech Republic (formerly, Czechoslovakia). Air samples ($n = 52$) were collected on membrane filters and analysed by electrothermal atomic absorption spectrometry. Urine samples ($n = 140$) were collected during the last 4 hours of workers’ shifts, and the results were corrected to a standard density of 1.024. In a matched-pair analysis of air and urine samples collected from 18 electrolysis workers, the correlation coefficient
was 0.562; the mean concentration of nickel in urine was 53.3 µg/L (range, 1.73–98.55 µg/L), and the mean concentration in air was 0.187 mg/m3 (range, 0.002–0.481 mg/m3).

In a study conducted at a Finnish electrolytic nickel refinery, Kiilunen et al. (1997) collected data on nickel concentrations in air, blood, and urine. Stationary samples ($n = 141$) were collected from 50 locations in the refinery, including those areas where breathing zone samples were taken. Personal (i.e. 8-hour breathing zone) samples were collected over 4 successive work days ($n = 157$), from the shoulders when no respiratory protection was worn, inside the mask when protective equipment was worn, and inside the mask hanging on the shoulder of the worker when the mask was taken off. Historical occupational hygiene measurements were examined to assess past exposure. Spot urine samples ($n = 154$) were collected, pre- and post-shift, over 4 successive work days and 1 free day thereafter. Blood samples ($n = 64$) were collected at the beginning of the study and at the end of the last work shift. A total of 34 workers (of 100) volunteered to participate in the study. Urinary nickel results in the workers were compared with two non-exposed control groups (30 office workers from the refinery and 32 unexposed persons from the Helsinki area). For the stationary samples, nickel concentrations were reported by location as water-soluble nickel, acid-soluble nickel and total nickel (all in µg/m3). Geometric mean nickel concentrations ranged from: 7.4 µg/m3 ('other sites') to 451 µg/m3 (in ‘tank house 3’) for water-soluble nickel; 0.5 µg/m3 ('other sites') to 4.6 µg/m3 ('solution purification') for acid-soluble nickel; and, 7.6 µg/m3 ('other sites') to 452 µg/m3 (in ‘tank house 3’). For the breathing zone samples, the range of geometric mean nickel concentrations was 0.2–3.2 µg/m3 (inside the mask) and 0.6–63.2 µg/m3 (no mask). Based on a review of historical stationary sampling data, average nickel concentrations varied in the range of 230–800 µg/m3 over the period 1966–88. Lower concentrations (112–484 µg/m3) were observed in the early 1990s. Geometric mean after-shift urinary concentrations of nickel were in the range of 0.1–0.8 µmol/L (mask in use) and 0.5–1.7 µmol/L (no mask in use). Urinary nickel concentrations were still elevated after 2- and 4-week vacations. No consistent correlations between airborne nickel concentrations and nickel concentrations in the blood or urine were observed.

Thomassen et al. (2004) measured the exposure of 135 copper refinery workers (45 females, 90 males) to copper, nickel and other trace elements at a nickel refinery complex in Monchegorsk, the Russian Federation. Full-shift breathing zone samples were collected for workers in the pyrometallurgical process ($n = 138$) and in the electrorefining process ($n = 123$) areas. Workers wore personal samplers for two to four full shifts. IOM samplers were used to assess the inhalable aerosol fraction, and Respicon samplers (3-stage virtual impactors) were used to separate the inhalable fraction into respirable, tracheobronchial, and extrathoracic aerosol fractions. The geometric mean inhalable nickel concentration was in the range of 0.024–0.14 mg/m3 for samples taken in the pyrometallurgical areas, and 0.018–0.060 mg/m3 for samples taken in the electrorefining areas (data presented as the sum of the inhalable water-soluble and water-insoluble subfractions). For the inhalable aerosol nickel concentrations observed in the pyrometallurgical process steps, the water-insoluble subfraction contained higher levels than the water-soluble fraction, with geometric means of 59 µg/m3 and 14 µg/m3, respectively. In the electrorefining process area, the nickel concentrations in the inhalable subfractions were 14 µg/m3 (water-soluble) and 10 µg/m3 (water-insoluble).

Air monitoring was conducted in three areas of a nickel base metal refinery in South Africa (the ball mill area, the copper winning area, and the nickel handling area). Personal breathing zone samples ($n = 30$) were collected in all areas of the
Nickel and nickel compounds

plant, and were analysed gravimetrically and by inductively coupled plasma mass spectroscopy. The mean time-weighted average concentrations for soluble, insoluble and total nickel dust, respectively, were 44, 51, and 95 µg/m3 in the ball mill area; 395, 400, and 795 µg/m3 in the nickel handling area; and 46, 17, and 63 µg/m3 in the copper winning area (Harmse & Engelbrecht, 2007).

Airborne dust concentrations, nickel concentrations, nickel speciation, and aerosol particle size distributions in two large-scale nickel production facilities were assessed by collecting a total of 46 inhalable samples (30 personal, 16 area), and 28 cascade impactor samples (18 personal, 10 area). Samples were collected using IOM and Marple cascade impactor sampling heads, and analysed gravimetrically. At the first site, inhalable concentrations were in the range of 0.5–9.1 mg/m3 for the personal samples, and 0.2–5.7 mg/m3 for the area samples (median concentrations, 0.7 mg/m3 and 0.4 mg/m3, respectively). Total nickel levels in the personal samples were in the range of 1.8–814.9 µg/m3, and 19.8–2481.6 µg/m3 in the area samples (median concentrations, 24.6 µg/m3 and 92.0 µg/m3, respectively). At the second site, airborne concentrations of inhalable dust were in the range of 1.2–25.2 mg/m3 for the personal samples, and 1.5–14.3 mg/m3 (median concentrations, 3.8 mg/m3 and 2.9 mg/m3, respectively) for the area samples. Total nickel levels were in the range of 36.6–203.4 µg/m3 in the area samples, and 0.2–170.7 µg/m3 in the personal samples (median concentrations, 91.3 and 15.2 µg/m3, respectively) (Creely & Aitken, 2008).

(b) Studies of nickel-using industries

Bavazzano et al. (1994) collected air, face, hand, and spot urine samples from 41 male workers in electroplating operations in 25 small factories in the province of Florence, Italy, and compared them to samples collected from non-exposed male subjects (face and hand samples: $n = 15$ subjects aged 15–60 years old; urine samples: $n = 60$ subjects aged 22–63 years old). For the airborne nickel measurements, personal exposure were in the range of 0.10–42 µg/m3 (median concentration, 2.3 µg/m3). The median nickel levels in the urine, on the hands, and on the face were, respectively, 4.2 µg/L (range, 0.7–50 µg/L), 39 µg (range, 1.9–547 µg), and 9.0 µg (range, 1.0–86 µg). Median hand, face, and urine nickel levels for the control subjects were, respectively, 0.8 µg (range, 0.0–5.3 µg; $n = 15$), 0.30 µg (range, 0.0–2.4; $n = 15$), and 0.7 µg (range, 0.1–2.5 µg; $n = 60$).

In an occupational hygiene survey of 38 nickel electroplating shops in Finland, exposure to nickel was assessed by questionnaire ($n = 163$), urine samples (phase 1: $n = 145$; phase 2: $n = 104$), bulk samples ($n = 30$), and air measurements in three representative shops (one clean, one intermediate, one dirty) on 1 day during which urine samples were also being collected. Full-shift breathing zone samples were collected from inside and outside a respirator with filters. In the first phase of the study, average urinary nickel concentration was 0.16 µmol/L (range, 0.0–5.0 µmol/L; $n = 145$). The range of mean values for different workplaces was 0.01–0.89 µmol/L, and for the median values, 0.02–0.05 µmol/L. For the 97 workers followed in the second phase, urinary nickel concentrations were observed to fluctuate with exposure, with mean nickel concentrations in the range of 0.10–0.11 µmol/L for the morning specimens, and 0.12–0.16 µmol/L for the afternoon specimens. Personal breathing zone nickel concentrations were as follows: 0.5 µg/m3 (hanger worker in the ‘clean shop’), 0.7 µg/m3 (worker responsible for maintenance of nickel bath in the ‘clean’ shop), and in the range of 5.6–78.3 µg/m3 for workers ($n = 6$) in the ‘dirty’ shop. In the area samples, nickel concentrations were 26 µg/m3 (near the nickel bath in the ‘clean’ shop), 11.9–17.8 µg/m3 (in the hanging area of the ‘dirty’ shop), and 73.3 µg/m3 (beside the nickel bath in the ‘dirty’ shop) (Kiilunen et al., 1997).
Kiilunen (1997) analysed data from the biomonitoring registry and the occupational hygiene service registry of the Finnish Institute of Occupational Health to examine trends in nickel exposure during 1980–89. A total of 1795 urinary nickel samples (for which it was possible to identify job titles) were examined, along with 260 nickel measurements from the breathing zone of workers for whom job titles were available. Across all job titles, the ranges of mean urinary nickel concentrations, by time period, were as follows: 0.05–0.52 µmol/L for 1980–82, 0.14–0.51 µmol/L for 1983–85, and 0.17–0.87 µmol/L for 1986–89. The two largest occupational groups sampled were platers (n = 503), and welders (n = 463). Mean urinary concentrations for platers, by time period, were 0.35 µmol/L for 1980–82 (range, 0.01–2.95), 0.30 µmol/L for 1983–85 (range, 0.01–2.10), and 0.38 µmol/L for 1986–89 (range, 0.03–2.37). Mean urinary concentrations for welders, by time period, were 0.22 µmol/L for 1980–82 (range, 0.03–1.58), 0.17 µmol/L for 1983–85 (range, 0.03–0.65), and 0.21 µmol/L for 1986–89 (range, 0.01–1.58). Analysis of the breathing zone measurements revealed that 22.1% of all measurements in 1980–82 had exceeded the occupational exposure limit (OEL) of 0.1 mg/m³. Similar results were seen for the 1983–85 period (24.8%), rising to 30.7% for the 1986–89 period. Job titles with mean values over the OEL in 1983–85 included: grinders (mean, 0.76 mg/m³, n = 29), one metal worker (0.12 mg/m³), powder cutters (mean, 0.34 mg/m³, n = 31), one spray painter (0.20 mg/m³), and welders (0.17 mg/m³, n = 72). Mean levels exceeded the OEL in the following four occupational groups during 1986–89: carbon arc chisellers (mean, 0.6 mg/m³, n = 2), grinders (mean, 0.28 mg/m³, n = 19), one warm handler (0.18 mg/m³), and burn cutters (mean, 0.14 mg/m³, n = 2).

The association between occupational exposure to airborne nickel and nickel absorption was examined by collecting personal breathing zone samples and urine samples from 10 workers at a galvanizing plant in Brazil that uses nickel sulfate. Spot urine samples were collected pre- and post-shift from the nickel-exposed workers over 5 consecutive days, and from 10 non-nickel exposed workers employed at a zinc plant over 3 consecutive days (n = 97 and 55, respectively). Both groups completed a questionnaire on occupational history, health and lifestyle factors; exposed workers also underwent a medical examination. Personal breathing zone samples (first 4 hours of shift) were collected using NIOSH protocols. Geometric mean airborne nickel levels were in the range of 2.8–116.7 µg/m³, and the urine levels, from samples taken post-shift, were in the range of 4.5–43.2 µg/g creatinine (mean, 14.7 µg/g creatinine) (Oliveira et al., 2000).

Sorahan (2004) examined data on mean (unadjusted) levels of exposure to inhalable nickel at a nickel alloy plant during 1975–2001 in Hereford, the United Kingdom. Data were reported for two time periods: 1975–80 and 1997–2001. Mean nickel levels (unadjusted) for the earlier period were as follows: 0.84 mg/m³ in the melting, fettling, and pickling areas; 0.53 mg/m³ in the extrusion and forge, hot strip and rolling, engineering, and melting stores areas; 0.55 mg/m³ in the machining, hot rolling, Nimonic finishing, and craft apprentice areas; 0.40 mg/m³ in the roll turning and grinding, cold rolling, cold drawing, wire drawing, and inspection areas; and 0.04 mg/m³ in the process stock handling, distribution and warehouse areas. The corresponding mean nickel levels (unadjusted) for the latter period were: 0.37 mg/m³, 0.45 mg/m³, 0.31 mg/m³, 0.30 mg/m³, and 0.29 mg/m³, respectively.

Eight-hour TWA (8-h TWA) exposures calculated for the period 1997–2001 were 0.33 mg/m³, 0.31 mg/m³, 0.16 mg/m³, 0.16 mg/m³, and 0.27 mg/m³, respectively.

Sorahan & Williams (2005) assessed the mortality of workers at a nickel carbonyl refinery in Clydach, the United Kingdom to determine whether occupational exposure to nickel resulted in increased risks of nasal cancer and lung cancer.
Using personal sampling data collected in the 1980s and 1990s, 8-h TWA exposure to total inhalable nickel was calculated, and assigned to six categories of work, based on the predominant species of nickel exposure. The six categories of work were: feed handling and nickel extraction, including kilns (oxide/metallic); pellet and powder production, and shipping (metallic); nickel salts and derivatives, and effluent (metallic/soluble); wet treatment and related processes (metallic/subsulfide/soluble); gas plant (non-nickel); and engineering and site-wide activities that could include any of the preceding work areas. Mean levels of total inhalable nickel dust were in the range of 0.04–0.57 mg/m\(^3\) in the 1980s (\(n = 1781\)), and 0.04–0.37 mg/m\(^3\) in the 1990s (\(n = 1709\)).

Stridsklev et al. (2007) examined the relationship between the concentration of airborne nickel in the occupational environment of grinders (\(n = 9\)) grinding stainless steel in Norway and the concentration of nickel in their urine and blood. Grinders either worked in a well ventilated hall of a shipyard or in a small non-ventilated workshop. The sampling protocol was as follows: full-shift personal samples were collected in the breathing zone of grinders over the course of 1 work week; urine samples were collected three times daily for 1 week (first void in the morning, pre- and post-shift); and blood samples were drawn twice daily for 3 days in 1 week (pre- and post-shift). Blood and urine samples were also collected on the Monday morning after a 3-week vacation in the workshop. Grinders also completed a questionnaire to collect information on work history, use of personal protective equipment, and smoking habits. Mean levels of airborne nickel were 18.9 µg/m\(^3\) (range, 1.8–88.6 µg/m\(^3\)) in the shipyard, and 249.8 µg/m\(^3\) (range, 79.5–653.6 µg/m\(^3\)) in the workshop. Mean blood nickel levels for grinders were 0.87 µg/L (range, < 0.8–2.4 µg/L) in whole blood, and 1.0 µg/L (range, < 0.4–4.1 µg/L) in plasma. Mean urinary nickel levels for grinders were 3.79 µg/g creatinine (range, 0.25–11.1 µg/g creatinine), and 4.56 µg/g creatinine (range, < 0.53–11.5 µg/g creatinine), from the first void, pre- and post-shift samples, respectively. With the exception of stainless steel welders welding the MIG/MAG-method [Metal Inert Gas-Metal Active Gas], mean urinary nickel levels were higher in grinders than in welders. Mean urinary nickel levels in MIG/MAG welders were 5.9 µg/g creatinine (range, < 0.24–20.5 µg/g creatinine), 3.8 µg/g creatinine (range, 0.33–11.4 µg/g creatinine), and 4.6 µg/g creatinine (range, < 0.25–18.4 µg/g creatinine) from the first void, pre-, and post-shift samples, respectively.

Sivulka & Seilkop (2009) reconstructed historical exposures to nickel oxide and metallic nickel in the US nickel alloy industry from personal and area measurements collected at 45 plants since the 1940s (\(n = 6986\) measurements). Of the measurements included in the database, 96% were personal breathing zone samples, and 4% were stationary area samples. The data provided evidence of a strongly decreasing gradient of airborne total nickel levels from the 1940s to the present.

1.5.3 Dietary exposure

Nickel has been measured in a variety of foodstuffs as “total nickel.” Average concentrations are in the range of 0.01–0.1 mg/kg, but can be as high as 8–12 mg/kg in certain foods (EVM, 2002; WHO, 2007). Factors influencing the concentration of nickel in food include the type of food (e.g. grains, vegetables, fruits versus seafood, mother’s milk versus cow’s milk), growing conditions (i.e. higher concentrations have been observed in food grown in areas of high environmental or soil contamination), and food preparation techniques (e.g. nickel content of cooking utensils, although the evidence for leaching from stainless steel cookware is somewhat mixed) (EVM, 2002; WHO, 2007).
The highest mean concentrations of nickel have been measured in beans, seeds, nuts and grains (e.g. cocoa beans, 9.8 μg/g; soyabeans, 5.2 μg/g; soya products, 5.1 μg/g; walnuts, 3.6 μg/g; peanuts, 2.8 μg/g; oats, 2.3 μg/g; buckwheat, 2.0 μg/g; and oatmeal, 1.8 μg/g). Although nickel concentrations vary by type of foodstuff, average levels are generally within the range of 0.01–0.1 μg/g. Reported ranges for some common food categories are: grains, vegetables and fruits, 0.02–2.7 μg/g; meats, 0.06–0.4 μg/g; seafood, 0.02–20 μg/g; and dairy, < 100 μg/L (EVM, 2002). This variability in nickel content makes it difficult to estimate the average daily dietary intake of nickel (EVM, 2002).

1.5.4 Biomarkers of exposure

Biomarker levels are influenced by the chemical and physical properties of the nickel compound studied, and by the time of sampling. It should be noted that the nickel compounds, the timing of collection of biological samples (normally at the end of a shift), and the analytical methods used differ from study to study, and elevated levels of nickel in biological fluids and tissue samples are mentioned only as indications of uptake of nickel, and may not correlate directly to exposure levels (IARC, 1990).

Atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) are the most common analytical methods used to determine “total nickel” concentrations in biological materials (such as blood, tissues, urine, and faeces). Nickel content can also be measured in other tissues, such as nails and hair, although specific procedures for dissolving the sample must be followed (ATSDR, 2005). The presence of calcium, sodium or potassium interferes with the quantification of nickel in biological samples, and specific techniques (e.g. isotope dilution) must be used to validate nickel measurements (ATSDR, 2005). Serum and urine samples are the most useful biomarkers of recent exposure, reflecting the amount of nickel absorbed in the previous 24–48 hours (NTP, 2000).

Minioja et al. (1990) used atomic absorption spectroscopy and neutron activation analysis to determine trace element concentrations of nickel in urine, blood, and serum collected from non-exposed healthy subjects (n = 1237; 635 males, 602 females) from the Lombardy region of northern Italy. The mean nickel level in urine samples (n = 878) was 0.9 μg/L (range, 0.1–3.9 μg/L); in blood samples (n = 36), 2.3 μg/L (range, 0.6–3.8 μg/L); and in serum samples (n = 385), 1.2 μg/L (range, 0.24–3.7 μg/L).

In a Norwegian-Russian population-based health study, human nickel exposure was investigated in the adult population living near a nickel refinery on both sides of the Norwegian-Russian border during 1994–95. Urine samples were collected from inhabitants, aged 18–69 years, of Nikel, Zapolyarny, and Sor-Varanger and also from individuals living more remotely from the Kola Peninsula nickel-producing centres (in the Russian cities of Apatity and Umba, and the Norwegian city of Tromso). A total of 2233 urine specimens were collected and analysed for nickel using electrothermal atomic absorption spectrometry. The highest urinary nickel concentrations were observed in residents of Nikel (median, 3.4 μg/L; mean, 4.9 μg/L; range, 0.3–61.9 μg/L), followed by Umba (median, 2.7 μg/L; mean, 4.0 μg/L; range, 1.0–17.0 μg/L), Zapolyarny (median, 2.0 μg/L; mean, 2.8 μg/L; range, 0.3–24.2 μg/L), Apatity (median, 1.9 μg/L; mean, 2.6 μg/L; range, 0.3–17.0 μg/L), Tromso (median, 1.2 μg/L; mean, 1.4 μg/L; range, 0.3–6.0 μg/L), and Sor-Varanger (median, 0.6 μg/L; mean, 0.9 μg/L; range, 0.3–11.0 g/L). The Russian participants all had a higher urinary nickel average than those from Norway, regardless of geographic location (Smith-Sivertsen et al., 1998).

A total of approximately 13000 urine samples were collected in 2000–05 from 1000 adult women aged 20–81 years who had no occupational exposure to nickel. Nickel in urine was analysed by graphite furnace atomic absorption spectrometry. The observed geometric mean concentration for nickel was 2.1 μg/L (range, < 0.2–57 μg/L). After correction for creatinine, the geometric mean concentration was reported as 1.8 μg/L (maximum, 144 μg/L).

1.5.5 Other sources of exposure

Nickel, chromium, and cobalt are common causes of allergic contact dermatitis. In the early 1990s it was recommended that household and other consumer products should not contain more than 5 ppm of each of nickel, chromium, or cobalt, and that, for an even greater degree of protection, the ultimate target level should be 1 ppm. In a recent survey, selected consumer products had the following nickel levels (ppm): hand-wash powders, 0.9; heavy duty powders, 0.5; laundry tablets, 0.5; liquid/powder cleaners, 0.4; heavy duty liquids, 0.1; machine/hand-wash liquids, 0.1; hand-wash liquids, 0.1, fine wash liquids, 0.1; and dishwashing liquids, 0.1 (Basketter et al., 2003).

Potential iatrogenic sources of exposure to nickel are dialysis treatment, leaching of nickel from nickel-containing alloys used as prostheses and implants, and contaminated intravenous medications (Sunderman, 1984).

2. Cancer in Humans

The previous IARC Monograph was based upon evidence of elevated risk of lung and nasal cancers observed among workers involved in a variety of nickel sulfide ore smelting and nickel refining processes that included high-temperature processing of nickel matte, nickel–copper matte, electrolytic refining, and Mond process refining. The exposures included metallic nickel, nickel oxides, nickel subsulfide, soluble nickel compounds, and nickel carbonyl. These cohort studies were conducted mainly in Canada, Norway, Finland, and in the United Kingdom (IARC, 1990; ICNCM, 1990).

2.1 Cohort studies and nested case–control studies

Since the previous IARC Monograph, several studies have extended follow-up to some of the previous cohorts, and have provided additional cohort and nested case–control analyses related mostly to lung cancer risk, and taking into account potential confounding factors as well as mixed exposures to water-soluble and -insoluble nickel compounds. Among the most common occupations with exposure to nickel compounds are stainless steel welders, who are also exposed to chromium (VI) compounds, and other compounds. Although there have been some cohort studies of stainless steel welders, these are not recorded in the present Monograph because it is difficult to ascribe any excess risks in these cohorts to nickel compounds specifically. Key results of some of these cohort studies can be found in Table 2.1 of the Monograph on chromium (VI) in this volume.

Also, since the previous IARC Monograph, experimental evidence has become available that nickel metal dust can become solubilized and bioavailable after inhalation. Consequently, separately classifying nickel and nickel compounds was viewed by the Working Group as not warranted. A similar distinction has not been made for other metals, e.g. beryllium and cadmium, in other IARC Monographs. Accordingly, this review did not exclude studies that focused on metallic nickel, unless they, for other reasons, were considered uninformative.
2.1.1 Cancer of the lung

Studies were carried out in nickel smelters and refineries in Canada, Norway (Kristiansand), Finland, and the United Kingdom (Clydach). Because the refining processes differed in the plants, the exposure profiles to various nickel compounds were different across the cohorts. Nonetheless, increased risks for lung cancer were found in cohorts from all of these facilities (see Table 2.1 available at http://monographs.iarc.fr/ENG/Monographs/voll00C/100C-05-Table2.1.pdf).

High risks for lung cancers were observed among calcining workers in Canada, who were heavily exposed to both sulfidic and oxidic nickel (nickel sulfides and oxides). A high lung cancer rate was also seen among nickel plant cleaners in Clydach who were heavily exposed to these insoluble compounds, with little or no exposure to soluble nickel. The separate effects of oxides and sulfides could not be estimated, however, as high exposure was always either to both, or to oxides together with soluble nickel. Workers in Clydach calcining furnaces and nickel plant cleaners, exposed to high levels of metallic nickel, had high lung cancer risks (see Table 2.1 online). A substantial excess risk for lung cancer among hydrometallurgy workers in Norway was mainly attributed to their exposure to water-soluble nickel. Their estimated exposures to other types of nickel (metallic, sulfidic, and oxidic) were as much as an order of magnitude lower than those in several other areas of the refinery, including some where cancer risks were similar to those observed in hydrometallurgy. High risks for lung cancer were also observed among electrolysis workers at Kristiansand (Norway). These workers were exposed to high estimated levels of soluble nickel and to lower levels of other forms of nickel. Nickel sulfate and nickel chloride (after 1953) were the only or predominant soluble nickel species present in these areas.

An update of the Kristiansand cohort by Andersen et al. (1996) demonstrated a dose-response relationship between cumulative exposure to water-soluble nickel compounds and lung cancer ($P < 0.001$) when adjustment was made for age, smoking, and nickel oxide. The risk was increased 3-fold in the highest soluble nickel dose group. A lesser, but positive, effect was seen between cumulative exposure to nickel oxide and risk of lung cancer, also with adjustment for age, cigarette smoking, and exposure to water-soluble nickel (P for trend = 0.05, see Table 2.2).

Subsequent to the Andersen et al. (1996) study, an industrial hygiene study re-evaluated exposure among the Norwegian refinery workers based on new information related to nickel species and exposure levels (Grimsrud et al., 2000). Grimsrud et al. (2003) updated the lung cancer incidence among the Norwegian nickel refinery workers (see Table 2.3 available at http://monographs.iarc.fr/ENG/Monographs/voll00C/100C-05-Table2.3.pdf). The strongest gradient for cumulative exposure and lung cancer was found in relation to water-soluble nickel adjusted for cigarette-smoking habits, which was known for 4728 (89%) of the cohort members. Regarding species of water-soluble nickel compounds, the risk from potential exposure to nickel chloride was similar to that for nickel sulfate. The nickel electrolysis process (using nickel sulfate) changed to a nickel-chloride-based process in 1953, and workers hired in 1953 or later had a similar lung cancer risk (standardized incidence ratio [SIR], 4.4; 95%CI: 1.8–9.1) as for those employed in the same area before 1953 when the nickel sulfate was used (SIR, 5.5; 95%CI: 3.0–9.2). Analyses by year of first employment indicated that those initially employed after 1978 continued to demonstrate a significantly elevated risk of lung cancer (SIR, 3.7; 95%CI: 1.2–8.7), suggesting continued exposure to nickel compounds.

Grimsrud et al. (2002) conducted a case-control study of lung cancer nested within the
Nickel and nickel compounds

Table 2.2 Relative risks of lung cancer by cumulative exposure to soluble nickel and nickel oxide, considering the two variables simultaneously by multivariate Poisson regression analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean exposure (mg/m³)</th>
<th>Cases</th>
<th>Relative risk</th>
<th>95%CI</th>
<th>Test for linear trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1</td>
<td>0.1</td>
<td>86</td>
<td>1.0</td>
<td>Referent</td>
<td></td>
</tr>
<tr>
<td>1–4</td>
<td>2.3</td>
<td>36</td>
<td>1.2</td>
<td>0.8–1.9</td>
<td></td>
</tr>
<tr>
<td>5–14</td>
<td>8.8</td>
<td>23</td>
<td>1.6</td>
<td>1.0–2.8</td>
<td></td>
</tr>
<tr>
<td>≥ 15</td>
<td>28.9</td>
<td>55</td>
<td>3.1</td>
<td>2.1–4.8</td>
<td></td>
</tr>
<tr>
<td>Nickel oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1</td>
<td>0.4</td>
<td>53</td>
<td>1.0</td>
<td>Referent</td>
<td></td>
</tr>
<tr>
<td>1–4</td>
<td>2.5</td>
<td>49</td>
<td>1.0</td>
<td>0.6–1.5</td>
<td></td>
</tr>
<tr>
<td>5–14</td>
<td>8.3</td>
<td>53</td>
<td>1.6</td>
<td>1.0–2.5</td>
<td></td>
</tr>
<tr>
<td>≥ 15</td>
<td>44.3</td>
<td>45</td>
<td>1.5</td>
<td>1.0–2.2</td>
<td></td>
</tr>
</tbody>
</table>

* Workers with unknown smoking habits were excluded (three cases of lung cancer). Adjusted for smoking habits and age.

From Andersen et al. (1996)

A cohort of Norwegian nickel refinery workers (see Table 2.3 online). Exposure groups were determined based on quintiles of the exposure variables in the controls. Analyses by cumulative exposure adjusted for cigarette smoking indicated that odds ratios for lung cancer in the highest cumulative exposure category of water-soluble nickel, sulfidic nickel, metallic nickel, and oxidic nickel were 3.8 (95%CI: 1.6–9.0), 2.8 (95%CI: 1.1–6.7), 2.4 (95%CI: 1.1–5.3), and 2.2 (95%CI: 0.9–5.4), respectively. The trend for cumulative exposure and lung cancer was significant for water-soluble nickel compounds only (P = 0.002). There was, however, a high degree of correlation with exposure to nickel and nickel compounds as a whole, making evaluation of the independent effect of individual compounds difficult. Nonetheless, when data were further adjusted for exposure to water-soluble compounds, there were no significant trends in the odds ratios by cumulative exposure to sulfidic, oxidic, or metallic nickel. The odds ratios related to the highest cumulative exposure group for each of these compounds were 1.2 (95%CI: 0.5–3.3), 0.9 (95%CI: 0.4–2.5), and 0.9 (95%CI: 0.3–2.4), respectively (see Table 2.4). In further analyses, with adjustment for cigarette smoking, arsenic, asbestos, sulfuric acid mist, cobalt and occupational carcinogenic exposures outside the refinery, the strong association between lung cancer and water-soluble nickel remained (Grimsrud et al., 2005).

Anttila et al. (1998) updated an earlier cohort study of Finnish nickel refinery and copper/nickel smelter workers (Karjalainen et al., 1992). Among refinery workers employed after 1945, who were exposed primarily to nickel sulfate, an excess of lung cancer was observed in the overall cohort (SIR, 2.61; 95%CI: 0.96–5.67), and the lung cancer risk increased with > 20 years of latency (SIR, 3.38; 95%CI: 1.24–7.36, based on six cases). Among smelter workers, lung cancer was also elevated in the overall cohort (SIR, 1.39; 95%CI: 0.78–2.28), and, similarly, a significant increase in lung cancer risk with > 20 years of latency was observed (SIR, 2.00; 95%CI: 1.07–3.42).

There have been three subsequent reports that provide additional information on refinery workers in Wales (the United Kingdom) exposed to nickel carbonyl and other nickel compounds.

Easton et al. (1992) carried out an updated analysis of Welsh nickel refinery workers to determine which nickel compounds were responsible for lung cancer among the 2524 workers employed
Table 2.4 Adjusted* odds ratios for lung cancer by exposure to sulfidic, oxidic or metallic nickel in a nested case–control study of Norwegian nickel refinery workers observed during 1952–95

<table>
<thead>
<tr>
<th>Cumulative exposure to nickel</th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfidic nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexposed</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0.6–3.9</td>
</tr>
<tr>
<td>Low-medium</td>
<td>2.2</td>
<td>0.9–5.5</td>
</tr>
<tr>
<td>Medium</td>
<td>1.8</td>
<td>0.7–4.5</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1.3</td>
<td>0.5–3.3</td>
</tr>
<tr>
<td>High</td>
<td>1.2</td>
<td>0.5–3.3</td>
</tr>
<tr>
<td>Likehood ratio test: $P = 0.344$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidic nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexposed</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0.6–3.8</td>
</tr>
<tr>
<td>Low-medium</td>
<td>1.8</td>
<td>0.7–4.5</td>
</tr>
<tr>
<td>Medium</td>
<td>1.4</td>
<td>0.6–3.7</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1.5</td>
<td>0.6–3.7</td>
</tr>
<tr>
<td>High</td>
<td>0.9</td>
<td>0.4–2.5</td>
</tr>
<tr>
<td>Likehood ratio test: $P = 0.406$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexposed</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.2</td>
<td>0.5–2.9</td>
</tr>
<tr>
<td>Low-medium</td>
<td>1.0</td>
<td>0.5–2.4</td>
</tr>
<tr>
<td>Medium</td>
<td>1.0</td>
<td>0.4–2.3</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1.0</td>
<td>0.4–2.4</td>
</tr>
<tr>
<td>High</td>
<td>0.9</td>
<td>0.3–2.4</td>
</tr>
<tr>
<td>Likehood ratio test: $P = 0.972$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data were adjusted for smoking habits in five categories (never smoker, former smoker, or current smoker of 1–10, 11–20, or >20 g/day), and for exposure to water-soluble nickel as a continuous variable with natural log-transformed cumulative exposure values (\(\ln\)([cumulative exposure] + 1)).

* Categories were generated according to quartiles among exposed control. In each of the three analyses, data were unadjusted for the other two insoluble forms of nickel.

From Grimsrud et al. (2002)

...for > 5 years before the end of 1969, and followed during 1931–85. The model was based on exposures occurring before 1935, and was adjusted for age at first exposure, duration of exposure, and time since first exposure. For lung cancer, the best fitting model suggested risks for soluble and metallic nickel exposures, and much less (if any) risk for nickel oxide or sulfides. Sorahan & Williams (2005) followed during 1958–2000 a group of 812 workers from the cohort of Welsh nickel refinery workers who were hired between 1953–92, and who had achieved > 5 years of employment. The overall lung cancer SMR was 1.39 (95%CI: 0.92–2.01). For those with > 20 years since the start of employment, lung cancer risk was significantly elevated [SMR, 1.65; 95%CI: 1.07–2.41], indicating an elevated risk of lung cancer among those hired since 1953.

Grimsrud & Peto (2006) combined data from the most recent updates of Welsh nickel refinery workers to assess lung cancer mortality risk by period of initial employment. For those first employed since 1930, an elevated risk was observed for lung cancer (SMR, 1.33; 95%CI: 1.03–1.72). [The Working Group noted that
Nickel and nickel compounds

Nickel and nickel compounds exposures were dramatically reduced during the 1920s.

Egedahl et al. (2001) updated the mortality data among employees at a hydrometallurgical nickel refinery and fertilizer complex in Fort Saskatchewan, Canada, who had worked for 12 continuous months during 1954–78. Among the 718 men exposed to nickel, the lung cancer SMR was 0.67 (95%CI: 0.24–1.46, based on six deaths). Significant decreases were observed for the ‘all causes of death’ category (SMR, 0.57; 95%CI: 0.43–0.74), and for the ‘all cancer deaths’ category (SMR, 0.47; 95%CI: 0.25–0.81). [The Working Group considered the study uninformative for the evaluation of cancer risks due to a substantial healthy worker effect which may have masked excess mortality that was associated with nickel exposure.]

Goldberg et al. (1994) conducted a 10-year incidence study and a nested case–control study of a cohort of nickel mining (silicate-oxide ores) and refinery workers in New Caledonia, South Pacific. They observed a significant decrease in the incidence of lung cancer, and this was also observed for other respiratory cancers. The results of the case–control study did not show elevated risks for respiratory cancers in relation to low levels of exposure to soluble nickel, nickel sulfide, or metallic nickel. For all three nickel exposures separately, the odds ratios were 0.7.

[The Working Group noted that in most of these studies of lung cancer risk in smelters and refineries, there was exposure to metallic nickel together with exposure to the other forms of nickel. Sivulka, 2005. Only one of these studies involved an attempt to evaluate separately the effect of metallic nickel. Grimsrud et al., 2002.]

Several additional studies of workers with potential exposure to metallic nickel were reviewed by the Working Group. Arena et al. (1998) evaluated mortality among workers exposed to “high nickel alloys” in the USA. A recent industrial hygiene analysis indicated that oxidic nickel comprised 85% of the total nickel exposure of these workers, with the rest being mostly metallic nickel (Sivulka & Seilkop, 2009). Compared to US national rates, lung cancer was significantly elevated among white men (SMR, 1.13; 95%CI: 1.05–1.21), among non-white men the SMR was 1.08 (95%CI: 0.85–1.34), and in women 1.33 (95%CI: 0.98–1.78). [The Working Group noted that the lung cancer SMR for the entire cohort combined was 1.13 (95%CI: 1.06–1.21) based on 955 observed deaths.] The authors also calculated SMRs based on local (SMSA) rates for the separate population subgroups. When calculated for the total cohort, the resulting SMR was [1.01; 95%CI: 0.95–1.08]. [The Working Group noted that it is difficult to interpret the use of local rates when the study population was derived from 13 separate areas located throughout the USA, but the use of rates from urban areas could have overestimated the expected number of deaths from lung cancer. The Working Group noted that the overall SMR for lung cancer in this study compared with the national population was statistically significant, and provides some evidence of an association between exposures in these plants and lung cancer. It appears that the primary exposure was to nickel oxide and thus, the study cannot be used to evaluate the specific carcinogenicity of metallic nickel. Analysis of lung cancer by duration of employment did not indicate a dose–response. The Working Group noted that duration of employment is a poor measure of exposure when exposures are known to have declined over time.]

There have also been a series of studies conducted in the French stainless steel industry that involved co-exposure to several known and potential human lung carcinogens, and the most detailed exposure assessment considered nickel and chromium combined (Moulin et al., 1990, 1993a, b, 1995, 2000).]

The only cohort of workers exposed to metallic nickel in the absence of other nickel compounds (Oak Ridge cohort) included only 814 workers, and provided little statistical power to evaluate
lungs cancer risk (Godbold & Tompkins, 1979; Cragle et al., 1984).

Sorahan (2004) updated the mortality rate among employees manufacturing nickel alloys at the plant in Hereford, the United Kingdom. The study showed a significant decrease for ‘all causes of death’ (SMR, 0.79), for ‘all cancer deaths’ (SMR, 0.81), and a non-significant decrease for lung cancer (SMR, 0.87; 95%CI: 0.67–1.11).

Pang et al. (1996) evaluated cancer risks among 284 men who were employed for at least 3 months during 1945–75 in a nickel-plating department, and followed through 1993. For lung cancer, the overall SMR was 1.08 (95%CI: 0.54–1.94). For those with > 20 years latency, eight lung cancer deaths were observed versus 6.31 expected [SMR, 1.27; 95%CI: 0.55–2.50].

Several other studies reviewed by Sivulka (2005) had mixed exposure to metallic nickel and other nickel compounds, and provide no evidence on the carcinogenicity of metallic nickel alone. Furthermore, many of the studies cited in the review involved mixed exposures in stainless steel welding and grinding, and manufacturing nickel alloys (Cox et al., 1981; Enterline & Marsh, 1982; references from Tables 5 and 6 of Sivulka, 2005), and therefore were not considered relevant for evaluating the carcinogenicity of nickel and/or nickel compounds.

2.1.2 Cancer of the nasal cavity

Increased risks for nasal cancers were found to be associated with exposures during high-temperature oxidation of nickel matte and nickel-copper matte (roasting, sintering, calcining) in cohort studies in Canada, Norway (Kristiansand), and the United Kingdom (Clydach), with exposures in electrolytic refining in a study in Norway, and with exposures during leaching of nickel-copper oxides in acidic solution (copper plant), and extraction of nickel salts from concentrated solution (hydrometallurgy) in the United Kingdom (see Table 2.5 available at http://monographs.iarc.fr/ENG/Monographs/vol100C/100C-05-Table2.5.pdf).

In the Norwegian study, Andersen et al. (1996) demonstrated a dose–response relationship between both cumulative exposure to water-soluble nickel and nickel oxide compounds and the risk of nasal cancer. The SIR (compared to the general population) was the highest in the group of workers with the highest cumulative exposure to soluble nickel compounds combined with insoluble nickel compounds (SIR, 81.7; 95%CI: 45–135; based on 15 cases). For workers with the highest cumulative exposure to nickel oxide, the SIR was 36.6 (95%CI: 19.5–62.5; based on 13 cases) (see Table 2.6 available at http://monographs.iarc.fr/ENG/Monographs/vol100C/100C-05-Table2.6.pdf).

An update of nasal cancer in Finnish refinery workers after 20 years since the first exposure to nickel reported an SIR of 67.1 (95%CI: 12–242.0; based on two cases) (Anttila et al., 1998). An additional nasal cancer was observed 2 years after the follow-up period ended, and a fourth potential nasal cancer (classified as a nasopharyngeal cancer, 0.04 expected) was reported during the follow-up period. No nasal cancers were observed among the smelter workers who were exposed primarily to nickel matte, nickel sulfide, nickel sulfides, and other metals.

Easton et al. (1992) attempted to identify the nickel compounds responsible for nasal cancer among 2524 Welsh nickel refinery workers employed for > 5 years before the end of 1969, and followed during 1931–85. As shown in Table 2.7, the risk for nasal cancer was in the range of 73–376 times the expected for those first employed before 1930, based on 67 nasal cancer deaths. A statistical model that fitted to the data on men whose exposures occurred before 1935, and that adjusted for age at first exposure, duration of exposure, and time since first exposure indicated that the soluble nickel effect on nasal cancer risk is the only one significant.
Nickel and nickel compounds

Grimsrud & Peto (2006) combined data from the most recent updates of Welsh nickel refinery workers to assess nasal cancer mortality risk by period of initial employment. For those first employed since 1930, an elevated risk was observed for nasal cancer (SMR, 8.70; 95%CI: 1.05–31.41, based on two observed deaths).

In one study of Swedish Ni–Cd battery workers, three nasal cancer cases versus 0.36 expected were observed (SIR, 8.32; 95%CI: 1.72–24.30) (Järup et al., 1998). Two of these cases occurred among workers exposed to greater than 2 mg/m3 nickel (SIR, 10.8; 95%CI: 1.31–39.0).

2.1.3 Other cancer sites

Other than for lung cancer and nasal sinus cancer, there is currently no consistency in the epidemiological data to suggest that nickel compounds cause cancer at other sites.

The results of several studies of workers exposed to nickel compounds showed a statistically elevated risk of a site-specific cancer in addition to lung and nasal cancer. A study of sinter plant workers in Canada showed a significantly elevated risk of cancer of the buccal cavity and pharynx (IARC, 1990). In a study in the Norwegian nickel-refining industry, a significant excess of laryngeal cancer was observed among roasting and smelter workers (Magnus et al., 1982).

Stomach cancer was significantly elevated among men employed in a nickel- and chromium-plating factory in the United Kingdom (Burges, 1980). A study of men employed in a nickel-plating department (Pang et al., 1996) showed a significant elevation in stomach cancer. Another study (Anttila et al., 1998) demonstrated a significant excess of stomach cancer among nickel refinery workers.

A study of workers producing alloys with a high nickel content (Arena et al., 1998) demonstrated a significant excess of colon cancer among ‘non-white males’ (relative risk, 1.92; 95%CI: 1.28–2.76), and a 2-fold risk of kidney cancer among white males employed in ‘melting.’ However, the excess risk was not associated with length of employment or time since first employment. [The Working Group noted that specific data was not provided in the article.]

A meta-analysis (Ojajärvi et al., 2000) reported a significantly elevated risk for pancreatic cancer that upon further evaluation actually indicated no elevation in risk (Seilkop, 2002).

A population-based case–control study (Horn-Ross et al., 1997) based on self-reported occupational exposure, showed a dose–response relationship between cumulative exposure to nickel compounds/alloys and salivary gland cancer. [The Working Group noted that the author corrected the direction of signs in Table 2 of her report in a subsequent erratum.]

Table 2.7 Observed and expected deaths from nasal sinus cancer (1931–85) by year of first employment

<table>
<thead>
<tr>
<th>Year first employed</th>
<th>Observed deaths</th>
<th>Expected deaths</th>
<th>SMR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1920</td>
<td>55</td>
<td>0.15</td>
<td>376</td>
<td>276–477</td>
</tr>
<tr>
<td>1920–29</td>
<td>12</td>
<td>0.17</td>
<td>73</td>
<td>36–123</td>
</tr>
<tr>
<td>1930–39</td>
<td>1</td>
<td>0.07</td>
<td>14</td>
<td>0.4–80</td>
</tr>
<tr>
<td>1940–49</td>
<td>0</td>
<td>0.06</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>> 1950</td>
<td>0</td>
<td>0.06</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>0.45</td>
<td>151</td>
<td>117–192</td>
</tr>
</tbody>
</table>

From Easton et al. (1992)
2.2 Synthesis

The Working Group evaluated a large body of evidence and concluded that there is an elevated risk of lung and nasal sinus cancer among nickel refinery workers (IARC, 1990; Andersen et al., 1996; Anttila et al., 1998; Grimsrud & Peto, 2006), and an elevation in lung cancer risk among nickel smelter workers (IARC, 1990; Anttila et al., 1998).

Epidemiological studies have provided evidence for lung cancer related to specific nickel compounds or classes of compounds (based, for example, on water solubility). Evidence for elevated risk of lung cancer in humans was demonstrated specifically for nickel chloride (Grimsrud et al., 2003), nickel sulfate, watersoluble nickel compounds in general (Andersen et al., 1996; Grimsrud et al., 2002, 2003; Grimsrud et al., 2005), insoluble nickel compounds, nickel oxides (Andersen et al., 1996; Anttila et al., 1998; Grimsrud et al., 2003), nickel sulfides (Grimsrud et al., 2002), and mostly insoluble nickel compounds (Andersen et al., 1996).

A study that modelled risks of various nickel compounds and lung cancer risk identified both water-soluble nickel and metallic nickel as contributing to risk (Easton et al., 1992). The largest study addressing worker exposure to metallic nickel (in combination with nickel oxide) showed a small but significant elevation in lung cancer risk (Arena et al., 1998).

Other studies specifically addressing nickel metal exposures were uninformative and did not allow any judgment as to whether such exposures should be considered different with regard to cancer risk. It was not possible to entirely separate various nickel compounds in dose–response analyses for specific nickel compounds. In one analysis, an additional adjustment for watersoluble nickel compounds on risk of lung cancer indicated little association with cumulative exposure to sulfidic, oxidic or metallic nickel. One study of Ni–Cd battery workers exposed to nickel hydroxide and cadmium oxide demonstrated a significant risk of cancer of the nose and nasal sinuses.

On the basis of the Norwegian studies of refinery workers, the evidence is strongest for water-soluble nickel compounds and risk for lung cancer. The confidence of the Working Group in the above findings was reinforced by the availability of information on cigarette smoking for 89% of the Norwegian cohort, and the adjustments made for potential confounding exposures.

3. Cancer in Experimental Animals

Nickel and nickel compounds have been tested for carcinogenicity by intramuscular injection to rats, mice, and rabbits; by repository injections at multiple sites in hamsters, rabbits and mice; by intraperitoneal administration to rats and mice; and by intratracheal instillation, intrapleural, intrarenal, intraocular, inhalation, and subcutaneous exposure to rats.

Particularly relevant studies reviewed in the previous IARC Monograph (IARC, 1990) were reconsidered in this evaluation, and summarized in the text.

3.1 Oral administration

3.1.1 Nickel sulfide

In a 2-year multiple dose study, oral nickel sulfate hexahydrate given to male and female rats did not result in carcinogenesis (Heim et al., 2007).

3.1.2 Nickel chloride

Nickel chloride was tested for carcinogenicity by oral administration in female hairless mice (CRL: SK1-hrBR). Mice were exposed to ultraviolet radiation (UVR) alone, nickel chloride alone (given in the drinking-water) and UVR + various concentrations of nickel chloride. Nickel
Nickel and nickel compounds

Nickel and nickel compounds

chloride alone did not cause skin tumours by itself, but when combined with UVR, it increased the UVR-induced skin tumour incidence (Uddin et al., 2007). See Table 3.1.

3.2 Inhalation exposure

3.2.1 Nickel sulfate hexahydrate

Nickel sulfate hexahydrate was not shown to be carcinogenic in male or female rats or male or female mice when given by inhalation in a 2-year bioassay study (Dunnick et al., 1995; NTP, 1996a). Analysis of lung burden showed that nickel was cleared from the lungs (Dunnick et al., 1995).

3.2.2 Nickel subsulfide

Nickel subsulfide induced lung tumours in rats exposed by inhalation (Ottolenghi et al., 1975).

Inhalation of nickel subsulfide increased the incidence of alveolar/bronchiolar adenomas and carcinomas in male F344 rats, and increased combined lung tumours in females (Dunnick et al., 1995; NTP, 1996b). Nickel subsulfide also increased the incidence of adrenal pheochromocytomas (benign or malignant) in male and female rats, malignant pheochromocytomas were increased in male rats. Significant dose-related trends were observed for both lung and adrenal tumours in both sexes.

Table 3.1 Studies of cancer in experimental animals exposed to nickel compounds (oral exposure)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Duration</th>
<th>Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, F344 (M, F)</td>
<td>104 wk</td>
<td>Nickel sulfate hexahydrate 0, 10, 30, 50 mg/kg/d (gavage),* 60/group/sex</td>
<td>Keratoacanthoma (tail): M–low dose 15% (numbers not provided)</td>
<td>$P < 0.001$</td>
<td>Age at start, 6 wk 99.9% pure Exposure-related decreased bw in males and females (2 highest dose groups) Exposure-related increased mortality ($P_{trend} < 0.008$) in high dose females but not males</td>
</tr>
<tr>
<td>Mouse, CRL: Sk1-hrBR (F)</td>
<td>224 d</td>
<td>Nickel chloride in drinking-water at 3 wk of age 3 wk later UV treatment (1.0 kJ/m2) 3 d/wk for 26 wk</td>
<td>Skin (tumours): Number of tumours/mice at 29 wk</td>
<td></td>
<td>Age at start, 3 wk Nickel had no effect on growth of the mice Nickel levels in skin increased with dose</td>
</tr>
</tbody>
</table>

* vehicle not stated

d, day or days; F, female; M, male; UVR, ultraviolet radiation; vs, versus; wk, week or weeks
3.2.3 Nickel oxide

The carcinogenicity of nickel oxide was investigated in 2-year inhalation studies in F344 male and female rats, and B6C3F1 male and female mice. Nickel oxide induced tumours of the lung (alveolar bronchiolar adenomas or carcinomas), and adrenal medulla (malignant and benign pheochromocytoma) in both sexes of rats. Nickel oxide also increased the incidence of lung tumours in low-dose females but not in male mice (NTP, 1996c).

3.2.4 Metallic nickel

Inhaled metallic nickel increased the incidence of adrenal pheochromocytomas (benign, malignant, and benign and malignant combined) in male rats and adrenal cortex tumours in female rats (Oller et al., 2008). Dose-related responses were observed for both types of adrenal tumours. No significant increases in lung tumours occurred. Elevated blood levels of nickel indicated that metallic nickel was bioavailable systematically after inhalation (Oller et al., 2008).

3.2.5 Other forms of nickel

Nickel carbonyl induced lung carcinomas after inhalation exposure (Sunderman et al., 1957, 1959).

See Table 3.2.

3.3 Parenteral administration

3.3.1 Nickel subsulfide

(a) Mouse

Nickel subsulfide induced local sarcomas after repository injections at multiple sites in numerous studies in mice (IARC, 1990).

No increase in lung tumour incidence was observed in male strain A/J mice, 20 or 45 weeks after exposure to various treatment regimens of nickel subsulfide (McNeill et al., 1990). In another study, nickel subsulfide induced injection-site tumours in all three strains of mice, with the order of susceptibility to tumour formation being C3H, B6C3F1, and C57BL6 (Rodriguez et al., 1996). Waalkes et al. (2004, 2005) studied the carcinogenic response to nickel subsulfide in MT-transgenic and MT-null mice. Intramuscular administration of nickel subsulfide increased the incidence of injection-site tumours (primarily fibrosarcoma) in MT-transgenic and concordant wild-type mice, and lung tumours in MT-transgenic mice (Waalkes et al., 2004). In MT-null mice and concordant wild-type mice, intramuscular injection of nickel sulfide induced fibrosarcomas as well (Waalkes et al., 2005). MT-expression, either overexpression (MT-transgenic mice) or no expression (MT-null), did not significantly affect the carcinogenic response to nickel.

(b) Rat

Nickel subsulfide induced lung tumours in rats exposed by intratracheal instillation (Pott et al., 1987). Intrarenal injection resulted in dose-related increases in renal cell tumours, and intraocular injection resulted in eye tumours in rats (Jasmin & Riopelle, 1976; Sunderman et al., 1979; Albert et al., 1982; Sunderman, 1983). Implantation of nickel subsulfide pellets into rat heterotropic tracheal transplant caused carcinomas and sarcomas (Yarita & Nettesheim, 1978). Local tumours were also observed in rats tested by intramuscular and intrarenal injection with nickel disulfide or nickel monosulfide (crystalline but not amorphous form), and in rats tested by intramuscular injection with nickel ferrosulfide matte (Sunderman, 1984; Sunderman et al., 1984).

When administered by intrarenal injection to F344 male rats, nickel subsulfide induced renal sarcomas (Kasprzak et al., 1994), which showed metastases to the lung, liver, and spleen. Injection site tumours (rhabdomyosarcoma,
Table 3.2 Studies of cancer in experimental animals exposed to nickel compounds or nickel powder (inhalation exposure)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel sulfate hexahydrate</td>
<td>Species, strain (sex)</td>
<td>Duration Reference</td>
<td>Dosing regimen Animals/group at start</td>
<td>Incidence of tumours</td>
</tr>
<tr>
<td>Rat, F344 (M, F)</td>
<td>104 wk</td>
<td>Dunnick et al. (1995), NTP (1996a)</td>
<td>0, 0.125, 0.25, 0.5 mg/m³ (equivalent to 0, 0.03, 0.06, 0.11 mg nickel/m³) for 6 h/d, 5 d/wk 63–65/group/sex</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas or squamous cell carcinomas): M–2/54, 0/53, 1/53, 3/53 F–0/52, 0/53, 0/53, 1/54 Adrenal medulla (pheochromocytomas, benign or malignant¹): M–16/54, 19/53, 13/53, 12/53 F–2/52, 4/52, 3/52, 3/54</td>
</tr>
<tr>
<td>Mouse, B6C3F₁ (M, F)</td>
<td>104 wk</td>
<td>Dunnick et al. (1995), NTP (1996a)</td>
<td>0, 0.25, 0.5, 1.0 mg/m³ (equivalent to 0, 0.06, 0.11, 0.22 mg nickel/ m³) 6 h/d, 5 d/wk 63–65/group/sex</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas): M–13/61, 18/61, 7/62, 8/61 F–7/61, 6/60, 10/60, 2/60</td>
</tr>
<tr>
<td>Species, strain (sex)</td>
<td>Dosing regimen</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Nickel subsulfide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, F344 (M, F) 104 wk</td>
<td>0, 0.15, 1 mg/m³ (equivalent to 0, 0.11, 0.73 mg nickel/m³) 6 h/d, 5 d/wk 63/group/sex</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas or squamous cell carcinomas): M–0/53, 6/53, 11/53 F–2/53, *6/53, 9/53</td>
<td>M: mid dose $P < 0.05$, high dose $P \leq 0.01$, $P_{trend} < 0.01$ F: mid dose $P \leq 0.05$ vs historical control, high dose $P < 0.05$, $P_{trend} < 0.05$</td>
<td>Age at start, 6 wk 73.3% Nickel No treatment-related effects on survival. Bw in high-dose groups Nickel lung burden increased with increasing exposure but reached steady-state by 15 mo (4–7 μg Ni/g lung). Lung carcinomas also were significantly increased in high-dose males</td>
</tr>
<tr>
<td>Mouse, B6C3F₁ (M, F) 104 wk</td>
<td>0, 0.6, 1.2 mg/m³ (equivalent to 0, 0.44, 0.9 mg nickel/m³) 6 h/d, 5 d/wk 63/group</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas): M–13/61, 5/59, 6/58 F–9/58, 2/59, 3/60</td>
<td>$P = 0.038 N^0$ mid dose vs control $P = 0.028 N^0$ mid dose vs control $P = 0.050 N^0$ high dose vs control</td>
<td>Age at start, 6 wk 73.3% Nickel No treatment-related effects on survival. Mean bw lower in exposed groups than control group. Nickel lung burden increased with exposure concentration and with time (at 15 mo, 12–26 μg Ni/g lung)</td>
</tr>
<tr>
<td>Species, strain (sex)</td>
<td>Dosing regimen</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Rat, F344 (M, F) 78–80 wk + held 30 wk</td>
<td>Nickel subsulfide with or without 1 mo pre-exposure to the airborne system (clean air or nickel sulfide dust 0.97 ± 0.18 mg/m³ for 5 d/wk), followed by injection of hexachlorotetrafluorobutane to half the animals, thereafter the inhalation exposure was continued for all animals 16 exposure groups (8 groups/sex) Pre-exposure Inj. Controls: 29 (M), 28 (F) Inj. NiS: 29 (M), 28 (F) No Inj. Controls: 28 (M), 30 (F) No Inj. NiS: 22 (M), 26 (F) No Pre-exposure Inj. Controls: 32 (M), 32 (F) Inj. NiS: 24 (M), 32 (F) No Inj. Controls: 31 (M), 31 (F) No Inj. NiS: 32 (M), 26 (F)</td>
<td>Lung (adenomas, adenocarcinomas, squamous cell carcinomas, fibrosarcomas): NiS–17 (M), 12 (F) Controls–1 (M), 1 (F)</td>
<td>M, F: $P < 0.01$</td>
<td>Pre-exposure: animals assigned airborne system for 1 mo No pre-exposure: animals housed in normal conditions for 1 mo Inj. = intravenous injection with pulmonary infraction agent Treatment-related decreased survival and decreased bw in males and females starting at 26 wk Inflammatory response – pneumonitis, bronchitis and emphysema Hyperplasias and squamous metaplastic changes in bronchial and bronchiolo-alveolar regions Infraction had no effect on carcinogenicity</td>
</tr>
</tbody>
</table>

Table 3.2 (continued)
Table 3.2 (continued)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, F344 (M, F)</td>
<td>0, 0.62, 1.25, 2.5 mg/m³ (equivalent to 0, 0.5, 1.0, 2.0 mg nickel/m³)</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas, or squamous cell carcinomas):</td>
<td>M, F: mid dose & high dose, $P \leq 0.05$ vs high dose</td>
<td>Age at start, 6 wk; 76.6% Nickel; No treatment-related effects on survival or bw; Nickel lung burden increased with exposure and with time (at 15 mo, 262–1116 μg Ni/lung)</td>
</tr>
<tr>
<td>Dunnick et al. (1995), NTP (1996c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse, B6C3F₁ (M, F)</td>
<td>0, 1.25, 2.5, 5.0 mg/m³ (equivalent to 0, 1.0, 2.0, 3.9 mg nickel/m³)</td>
<td>Lung (alveolar/bronchiolar adenomas or carcinomas):</td>
<td>M: high dose, $P = 0.027$, $P_{\text{trend}} = 0.008$</td>
<td>If the squamous cell carcinomas (lung tumours) are not included, then the mid dose and high dose are significant vs the current controls; Significantly increased incidence of malignant pheochromocytomas in high-dose males</td>
</tr>
<tr>
<td>104 wk</td>
<td>6 h/d, 5 d/wk 80/group/sex</td>
<td>M–9/57, 14/67, 15/66, 14/69 F–6/64, 15/66, 12/63, 8/64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunnick et al. (1995), NTP (1996b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adrenal medulla (pheochromocytomas, benign or malignant):</td>
<td>F: high dose, $P = 0.01$, $P_{\text{trend}} < 0.001$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M–27/54, 24/53, 27/53, 35/54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F–4/51, 7/52, 6/53, 18/54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2 (continued)
Table 3.2 (continued)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel metal powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Rat, Wistar Crl:Wi (G1XBRI/ Han) (M, F) 12–30 mo | Oller et al. (2008) | 0, 0.1, 0.4, 1 mg/m³ for 6 h/d, 5 d/wk, exposure time, additional hold time – Group 1: 0, 24 mo, 6 mo Group 2: 0.1, 24 mo, 6 mo Group 3, F: 0.4, 19 mo, 11 mo Group 3, M: 0.4, 24 mo, 6 mo Group 4, F: 1.0, ~14 mo, 0 mo Group 4, M: 1.0, ~12 mo, 0 mo 50/group | Groups 1, 2, 3 Adrenal gland (pheochromocytomas, benign or malignant): M–0/50, 5/50, 21/50 F–0/50, 5/49, 3/53 Adrenal cortex (adenomas or carcinomas): M–1/50, 3/50, 2/50 F–2/50, 2/49, 7/54 | M: 0.4 mg/m³ Significant increase for benign, malignant, benign combined, significant dose-related response f F: 0.4 mg/m³ Significant increase for combined (adenoma and carcinoma) and significant dose-related response f | Age at start, 6 wk 99.9% pure Exposure-related mortality was observed in the high-dose group (Group 4 M, F, these animals were removed from the main study), and in Group 3 F (animals from satellite study reassigned to main study). Exposure-related bw effects were observed in Groups 2 (M), 3 (F &M), and 4 (F &M). Exposure-related lung toxicity was observed. Nickel lung burden (μg Ni/lung) increased with exposure and with time (appeared to reach steady-state at 12 mo) g. Increases in adrenal tumours were within published (external) historical controls for Wistar rats a. Includes 1 squamous cell carcinoma b. Only alveolar bronchiolar adenomas observed in female rats; adjusted rate not reported c. Adjusted rates not provided d. Dunnick reported 1 tumour and NTP technical report reported 0 e. Only benign tumours observed. f. P-value not reported calculated by Peto g. Data not available for all time points h. A negative trend or a lower incidence in an exposure group is indicated by N bw, body weight; d, day or days; h, hour or hours; F, female; M male; mo, month or months; Ni, nickel; NR, not reported; vs, versus; wk, week or weeks

a. Includes 1 squamous cell carcinoma
b. Only alveolar bronchiolar adenomas observed in female rats; adjusted rate not reported
c. Adjusted rates not provided
d. Dunnick reported 1 tumour and NTP technical report reported 0
e. Only benign tumours observed.
f. P-value not reported calculated by Peto
g. Data not available for all time points
h. A negative trend or a lower incidence in an exposure group is indicated by N
fibromas, malignant fibrous histiocytomas or leiomyosarcomas) were observed in male or female F344 rats administered nickel subsulfide intramuscularly (Ohmori et al., 1990; Kasprzak & Ward, 1991), and intra-articularly (Ohmori et al., 1990). One study found that in female rats subjected to bone fractures and treated intramuscularly or intra-articularly had a shorter time to sarcoma formation, reduced survival time, and higher metastatic rate than rats treated with nickel alone (Ohmori et al., 1990). Ohmori et al. (1999) studied strain susceptibility in male and female Wistar rats, and one strain (CRW) was found to be more sensitive to intramuscular injection of nickel.

(c) Hamster

Nickel subsulfide induced local sarcomas after repository injections at multiple sites in numerous studies in hamsters (IARC, 1990).

(d) Rabbit

Nickel subsulfide induced local sarcomas after repository injections at multiple sites in numerous studies rabbits (IARC, 1990).

3.3.2 Nickel oxide and hydroxide

Nickel oxide induced lung tumours in rats by intratracheal instillation (Pott et al., 1987), local sarcomas in mice by intramuscular injection (Gilman, 1962), and rats by intramuscular, intrapleural, and intraperitoneal injection (Gilman, 1962; Sunderman & McCully, 1983; Skaug et al., 1985; Pott et al., 1987). Nickel hydroxide induced local sarcomas in rats when tested by intramuscular injection (Gilman, 1966; Kasprzak et al., 1983).

Sunderman et al. (1990) tested the carcinogenicity of five nickel oxides or nickel-copper oxides in male Fisher 344 rats. The three oxides that induced sarcomas at the injection sites had measurable dissolution rates in body fluids, and were strongly positive in an erythrocytosis stimulation assay, demonstrating nickel bioavailability.

3.3.3 Nickel acetate

(a) Mouse

Nickel acetate when administered by intraperitoneal injection induced lung adenocarcinomas and pulmonary adenomas in Strain A mice (Stoner et al., 1976; Poirier et al., 1984).

(b) Rat

A single intraperitoneal injection of nickel acetate initiated renal epithelial tumours (including carcinoma) after promotion using sodium barbital in the drinking-water in male rats (Kasprzak et al., 1990).

See Table 3.3.

3.3.4 Metallic nickel

3.3.5 Nickel sulfate

Table 3.3 Studies of cancer in experimental animals exposed to nickel compounds (parenteral administration and intratracheal instillation)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel subsulfide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse, Strain A (M) 45 wk</td>
<td>i.t. and i.p. 0, 0.53, 0.160 mg/kg bw 3 dosing regimens for 15 wk 1/wk (15 treatments), 1 every 2 wk (8 treatments), 1 every 3 wk (5 treatments); 3 doses per regiment; 30/group 10 mice sacrificed after 20 wk</td>
<td>Lung (adenomas at 45 wk): i.t.– Number of treatments: dose 5: 68%, 63%, 58% 8: 64%, 54%, 61% 15: 47%, 47%, 56% i.p.– 5: 68%, 63%, 53% 8: 58%, 53%, 63% 15: 63%, 47%, 50%</td>
<td>Age at start, 8–10 wk Nickel subsulfide −1.8 μm mass medium diameter 73% Nickel and 26.3% sulfur (weight) Urethane (positive control) significantly increased tumour incidence i.p., i.t., after 20 wk, and i.t. after 45 wk, average number of adenoma/mouse increased i.p. and i.t. at both time points No treatment effects on bw</td>
<td></td>
</tr>
<tr>
<td>Mouse, C57BL/6, B6C3F1, C3H/He (M) 78 wk</td>
<td>i.m. (thigh) 0, 0.5, 1.0, 2.5, 5.0, 10 mg/site (single injection) 30/group</td>
<td>Injection site (rhabdomyosarcomas, fibrosarcomas, and other e.g. liposarcomas, haemangioendothelial sarcomas):</td>
<td></td>
<td>Age at start, 6–8 wk; weight, 23–29 g High dose was lethal within 1 wk to over 50% of all 3 strains; susceptibility was C57BL > B6C3F1 > C3H Treatment-related decrease in bw was observed for C3H and B6C3F1 at 2 highest doses. Tumours of the liver, lung adenomas and leukaemias were also observed, but were not increased in exposed groups compared to controls Susceptibility to tumours C3H > B6C3F1 > C57BL</td>
</tr>
<tr>
<td>C3He</td>
<td>0/30, 5/30 (16.6%), 10/30 (33.3%), 20/27 (74.1%), 28/29, (96.6%) 14/14 (100%)</td>
<td>[P = 0.052, 0.5 mg; (P < 0.001) for other doses] (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6C3F1</td>
<td>0/30, 2/29 (6.9%), 8/30 (26.7%), 15/30 (50.0%), 16/20 (80%), 5/6 (83.3%)</td>
<td>[P < 0.01, 1.0 mg, (P < 0.001), 2.5, 5.0, 10 mg] (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C57BL</td>
<td>0/24, 1/27 (3.7%), 4/28 (14.3%), 6/21 (28.6%), 6/15(40%), 0/2</td>
<td>[P < 0.01, 2.5, 5 mg] (a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\) Number of treatments: dose 5: 68%, 63%, 58% 8: 64%, 54%, 61% 15: 47%, 47%, 56%
<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse, MT transgenic and wild-type (M) 104 wk</td>
<td>i.m. (both thighs)</td>
<td>0, 0.5, 1 mg/site (single injection) 25/group</td>
<td>Injection site (primarily fibrosarcomas, but also included fibromas and lymphosarcomas): WT–0/24, 5/25 (20%), 10/25 (40%). MT-Tg–0/25, 7/25 (28%), 7/24 (29%).</td>
<td>WT: $P < 0.05$, mid-and low dose, $P_{trend} < 0.0001$ MT-Tg: $P < 0.05$, mid-and low dose, $P_{trend} = 0.0081$ trend</td>
<td>Age at start, 12 wk 99.9% pure, 30 μm particles Average survival time less in MT-Tg mice than controls. Treatment-related decrease in survival in WT but not MT-Tg mice. No effect on bw No differences in injection-site tumour incidence or latency between MT-Tg and WT mice MT-transgenic controls had significantly lower incidence of lung tumours than WT controls.</td>
</tr>
<tr>
<td>Mouse, MT-null (double knockout) and wild-type (M) 104 wk</td>
<td>i.m. (both thighs)</td>
<td>0, 0.5, 1 mg/site (single injection), 25/group</td>
<td>Injection site (primarily fibrosarcomas, but also included fibromas): WT–0/24, 8/25(32.0%), 18/25 (72.0%). MT-null–0/24, 11/24 (45.8%), 15/23 (62.5%). Lung (adenomas or adenocarcinomas): WT–7/24 (29.2%), 12/25 (48.0%), 11/25 (44.0%). MT-null–10/24 (41.7%), 13/24 (54.2%), 4/23 (16.7%).</td>
<td>$P < 0.05$ low and high dose $P < 0.05$ low and high dose $P_{trend} = 0.046$</td>
<td>Age at start, 12 wk 99.9% pure, < 30 μm particles No difference in survival between control MT-null mice and control WT mice. Nickel treatment reduced survival at later time points corresponding to the appearance of sarcomas. Nickel treatment reduced bw in high-and mid dose MT-null and high-dose WT mice</td>
</tr>
</tbody>
</table>
Table 3.3 (continued)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse, MT-null (double knockout) and wild-type (M)</td>
<td>104 wk</td>
<td>Lung (adenocarcinomas):</td>
<td>WT: P < 0.05 low dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT–1/24 (4.2%), 10/25 (40.0%), 3/25 (12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT-null–3/24 (12.5%), 3/24 (12.5%), 4/23 (17.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lung (adenomas):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT–6/24 (25%), 2/25 (8.0%), 8/25 (32.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, F344/NCr (M)</td>
<td>i.r. (2 injections)</td>
<td>Kidney (malignant tumours of mesenchymal cell origin) at 104 wk:</td>
<td>Group 2 vs Group 1 [P < 0.01]</td>
<td>Ni, S < 10μm</td>
</tr>
<tr>
<td>109 wk</td>
<td>Ni,S₂ – 5 mg, MgCarb – 6.2 mg, Fe₀–3.4 mg</td>
<td>Group 1: 25/40 (63%)</td>
<td></td>
<td>No effect on bw or survival (from causes other than kidney tumours)</td>
</tr>
<tr>
<td></td>
<td>Groups: treatment, number of animals</td>
<td>Group 2: 4/20 (20%)</td>
<td></td>
<td>MgCarb also delayed onset of tumours (besides decreasing the incidence), and Fe decreased time until first tumour</td>
</tr>
<tr>
<td></td>
<td>Group 1: Ni,S₂, 40</td>
<td>Group 3: 0/20</td>
<td></td>
<td>Metastases to lung, liver, spleen and other kidney</td>
</tr>
<tr>
<td></td>
<td>Group 2: Ni,S₂ + MgCarb, 20</td>
<td>Group 4: 12/20 (60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: MgCarb, 20</td>
<td>Group 5: 0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: Ni,S₂ + Fe₀, 20</td>
<td>Group 6: 0/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 5: Fe₀, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 6: vehicle, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20–40/group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species, strain (sex)</td>
<td>Route Dosing regimen</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Rat, F344/NCr (M)</td>
<td>i.m. and s.c (single injection) Ni\textsubscript{3}S\textsubscript{2}, MB, CORT, IND</td>
<td>Injection-site tumours (rhabdomosarcomas, fibrosarcomas, histolytic sarcomas): 36 wk; 71 wk</td>
<td>[Groups 2, 3, 4, 6 or 8 vs Group 1, 36 & 71 wk, (P < 0.01); Group 9 vs Group 1, 36 wk, (P < 0.05)]a</td>
<td>Age at start, 8 wk Ni\textsubscript{3}S\textsubscript{2} < 10 μm No effect on bw Metastases to the lung MB given away from the injection site (s.c.) decreased tumour latency induced by Ni\textsubscript{3}S</td>
</tr>
<tr>
<td>109 wk</td>
<td>Kasprzak & Ward (1991)</td>
<td>Group 1: Ni\textsubscript{3}S\textsubscript{2}, none, 20 Group 2: MB, none, 20 Group 3: Ni\textsubscript{3}S\textsubscript{2} + MB, none, 20 Group 4: CORT, none, 20 Group 5: Ni\textsubscript{3}S\textsubscript{2} + CORT, none, 20 Group 6: IND, none, 20 Group 7: Ni\textsubscript{3}S\textsubscript{2} + IND, none, 20 Group 8: water, none, 20 Group 9: Ni\textsubscript{3}S\textsubscript{2}, MB, 20 Group 10: Ni\textsubscript{3}S\textsubscript{2}, IND, 20 20/group</td>
<td>Group 1: 10/20 (50%); 17/20 (85%) Group 2: 0/20; 0/20 Group 3: 0/20; 1/20 (5%) Group 4: 0/20; 0/20 Group 5: 9/20 (45%); 17/20 (85%) Group 6: 0/20; 0/20 Group 7: 6/20 (30%); 16/20 (80%) Group 8: 0/20; 0/20 Group 9: 18/20 (90%); 20/20 (100%) Group 10: 13/20 (65%); 19/20 (95%)</td>
<td></td>
</tr>
<tr>
<td>Species, strain (sex)</td>
<td>Route Dosing regimen Animals/group at start</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Rat, F344 (F) 1 yr | Ni$_3$S$_2$–10 mg Groups, treatment, number of animals
Group 1: fracture bone, 10 mg/fracture, 20
Group 2: 10 mg i.m right thigh, 20
Group 3: 10 mg i.a. right knee joint, 20
Group 4: control (CM), 3 fractured bone, 3 i.m., 2 i.a. 20/group | Injection site (malignant fibrous histiocytomas, rhabdomyosarcomas, fibrosarcomas, leiomyosarcomas):
Group 1: 17/20 (85%)
Group 2: 20/20 (100%)
Group 3: 16/20 (80%)
Group 4: 0/7 (0%)
Metastasis (lymph node, lung):
Group 1: 16/17 (94.1), 9/17 (52.9)
Group 2: 5/20 (25.0%), 3/20 (15.0%)
Group 3: 3/16 (18.8%), 2/16 (12.5%)
Group 4: 0/7, 0/7 | $P < 0.05$, Group 1 vs Group 2 or Group 3 | Age at start, 10 wk
Ni$_3$S$_2$ medium particle diameter $< 2\mu$m
Vehicle, CM
Tumour-induction time and survival time shorter in Group 1 than Groups 2 or 3. No osteogenic sarcoma developed in bone-fracture group |

| Rat, Wistar (M, F) 70 wk | Ni$_3$S$_2$–10 mg i.m. (single injection) Groups, strain, treatment; number of animals
Group 1: SHR–10 mg; 15F, 15M
Group 2: CWR–10 mg; 15F, 16M
Group 3: SHR–0 mg; 6F, 6M
Group 4: CWR–0 mg 7F, 7M 6–15/group | Sarcomas (rhabdomyosarcomas, leiomyosarcomas, fibrosarcomas and malignant fibrous histiocytomas):
Groups: F; M; Total
Group 1: 2/15 (13.3%); 5/15 (33.3%); 7/30 (23.3%)
Group 2: 8/15 (53.3%), 13/16 (81.4%); 21/31 (67.7%)
Group 3: 0/6, 0/6
Group 4: 0/7, 0/7 | Total: Group 1 vs Group 2, $P < 0.005$ | Age, 10 wk
Ni$_3$S$_2$ medium particle diameter $< 2\mu$m
Vehicle, CM
Tumour incidence, progression (as shown by tumour size and metastasis) was significantly lower in SHR rats (M, F combined) than in CWR rats
Metastases observed in the lung and lymph node |
Table 3.3 (continued)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Duration</th>
<th>Reference</th>
<th>Route Dosing regimen</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel oxide</td>
<td>104 wk</td>
<td>Sunderman et al. (1990)</td>
<td>i.m. (hind limb) single injection Group: Ni by wt.; other elements V: vehicle control (glycerol) A: 0.81% Ni (III); none B: 0.05% Ni (III); none F: < 0.03% Ni (III); none H: 21% Cu, 2% Fe, 1.1% Co, 1% S, 0.5% Ni, S I: 13% Cu, 1.2% Fe, 1.0 Co, 0.3% S, 1.0% Ni, S (positive control) 20 mg Ni/rat 15/group</td>
<td>Injection site (rhabdomyosarcomas, fibrosarcomas, malignant fibrous histiocytomas, leiomyosarcomas, undifferentiated): V, 0/15; A, 6/15 (40.0%); B, 0/15; F, 0/15; H, 13/15 (86.7%); I, 15/15 (100%) Positive control, Ni, S, 15/15(100%)</td>
<td>$P < 0.01$ A; $P < 0.001$ H, I, Ni, S, S</td>
<td>Age at start, ~2 mo 5 NiO compounds – all compounds had 52–79% Nickel (total), and 22–24% O. Nickel could not be determined in Groups H and I because of the presence of sulfur Groups A, H, and I all had measurable dissolution rates in body fluids and were strongly positive in an erythrocytosis-stimulation assay Compounds B and F were insoluble in body fluids, did not stimulate erythrocytosis and had little Ni (III), Cu, Fe, Co, or S</td>
</tr>
</tbody>
</table>

<p>| Rat, Wistar (F) | Life span | Pott et al. (1987) | (mg x wk) number of animals NiO 50 mg (10 × 5); 34 150 mg (10 × 15); 37 Ni, S 0.94 mg (15 × 0.063); 47 1.88 mg (15 × 0.125); 45 3.75 mg (15 × 0.25); 47 Nickel powder 6 mg (20 × 0.3); 32 9 mg (10 × 0.9); 32 32–47/group | Lung (adenomas, adenocarcinomas, squamous cell carcinomas); % tumours for each dose NiO–27%, 31.6% Ni, S–15%, 28.9% Nickel powder–25.6%, 25% Saline, 0% | Age at start, 11 wk NiO, 99.9% pure |</p>
<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, F344/NCr (M)</td>
<td>NiAcet –90 μmol/kg bw single i.p. injection; NaBB–50 ppm in drinking-water (2 wk after NiAcet)</td>
<td>Renal cortical tumours (adenomas & adenocarcinomas): Group 1–1/23 (4.3%); Group 2–16/24 (66.7%) (4 carcinomas); Group 3–6/24 (25%); Group 4–0/24</td>
<td>P < 0.008 vs Group 3</td>
<td>Age at start, 5 wk; Initiation/promotion study; Decreased survival and bw in rats given nickel acetate followed by NaBB; Kidney weight increased in Groups 2 and 3; Renal cortical tumours: metastatic nodules observed in the lung, spleen and liver</td>
</tr>
<tr>
<td>Mouse, Strain A (M, F)</td>
<td>i.p. Nickel acetate; 3×/wk (24 injections total) 0, 72, 180, 360 mg/kg Saline control</td>
<td>Lung (adenomas): Average number of tumours/mouse (mean ± SD) Saline: 0.42 ± 0.10 72: 0.67 ± 0.16 180: 0.71 ± 0.19 360: 1.26 ± 0.29</td>
<td>P < 0.01 high dose</td>
<td>Age at start, 6–8 wk; 99.9% pure; Sample of nodules confirmed by histopathology; No difference in control M, F, so M, F were combined; Positive control urethane; Control saline; Doses correspond to MTD, ½ MTD, 1/5 MTD</td>
</tr>
<tr>
<td>Mouse, Strain A (M, F)</td>
<td>i.p. Nickel acetate 10.7 mg/kg bw (0.04 mmol kg/bw)/injection; 3×/wk (24 injections total) 30/group</td>
<td>Lung (adenomas): Average number of tumours/mouse (mean ± SD) Saline: 0.32 ± 0.12 Nickel acetate: 1.50 ± 0.46</td>
<td>P < 0.05</td>
<td>Age at start, 6–8 wk; Nodules (sample) confirmed by histology; Co-exposure to calcium and magnesium decreased multiplicity</td>
</tr>
</tbody>
</table>

* Calculated by Fisher Exact Test, Significance not reported by authors.

bw, body weight; CM, chloromycetin; CORT, cortisol; CWR, common closed colony rats; F, female; Fe0, metallic iron; HSR, spontaneously hypertensive rats; i.a., intra-articular; i.f., intra-fat; i.m., intramuscular; IND, indometacin; i.p., intraperitoneal; i.r., intrarenal; i.t., intratracheal instillation; M, male; MB, Mycobacterium bovis antigen; MgCarb, magnesium basic carbonate; MT, metallothionen; MTD, maximum tolerated dose; NABB, sodium barbital; Ni, nickel; NiAcet, nickel acetate; Ni,S, nickel subsulfide; s.c., subcutaneous; SD, standard deviation; Tg, Transgenic; wk, week or weeks; WT, wild type; yr, year or years
Table 3.4 Studies of cancer in experimental animals exposed to nickel acetate (transplacental exposure)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Dosing regimen</th>
<th>Results</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, F344/NCr (M, F)</td>
<td>Dams – i.p</td>
<td>Renal tumours (cortex adenomas and carcinomas; or pelvis papillomas and carcinomas):</td>
<td></td>
<td>Dams, age at start 3–4 mo Purity not provided Male (Groups 1 & 2) – significantly decreased bw at 75 wk All offspring in Group 3 died at 72 h Survival was decreased in Groups 1A, 1B, 2A and 2B compared to controls (4A and 4B) Pituitary tumours: significantly decreased latency for Groups 1A (M, F), 1B (M, F) and 2A (F) compared to the Groups 4A or 4B (corresponding M or F)</td>
</tr>
<tr>
<td></td>
<td>NiAcet (90 μmol/kg wt total)</td>
<td>1A: 0/17 (M), 0/16 (F) 2A: 0/15 (M), 0/15 (F) 4A: 0/15 (M), 0/16 (F) 1B: 8/15 (53.3%, M), 0/15 (F) 2B: 7/15 (46.7%, M), 0/15 (F) 4B: 1/15 (6.6%, M), 0/14 (F)</td>
<td>M: (P = 0.007) (1B vs 4B) M: (P = 0.012) (2B vs 4B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 1: 90; once at Day 17 of gestation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 45; twice at Days 16 & 18 of gestation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 45; 4 times at Days 12, 14, 16, 18 of gestation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: control (180 NaAcet) once at Day 18 of gestation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offspring 4 to 85 wk (drinking-water) ad libitum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1A, 2A, 4A – tap water 1B, 2B, 4B – 0.05% NBB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pituitary gland (adenomas or carcinomas):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1A: 9/17 (52.9%, M), 5/16 (31.3%, F), 14/33 (42.3%, M, F) 2A: 6/15 (40.0%, M), 8/16 (50%, F), 14/31 (45.2%, M, F) 4A: 1/15 (6.7%, M), 3/14 (21.4%, F) 1B: 6/15 (40.0%, M), 5/15 (33.3%, F) 2B: 7/15 (46.7%, M), 6/15 (40.0%, F) 4B: 2/15 (13.3%, M), 4/14 (28.6%, F)</td>
<td>M, F: (P = 0.012) 1A vs 4A M, F: (P = 0.008) 2A vs 4A</td>
<td></td>
</tr>
</tbody>
</table>

h, hour or hours; F, female; i.p., intraperitoneal; M, male; mo, month or months; NaBB, sodium barbital; vs, versus; wk, week or weeks
3.3.6 Nickel chloride

3.3.7 Other forms of nickel

Intramuscular administration of nickel sulfarsenide, nickel arsenides, nickel antimonide, nickel telluride, and nickel selenides caused local sarcomas in rats (Sunderman & McCully, 1983). Intramuscular administration of nickelocene caused some local tumours in rats and hamsters (Furst & Schlauder, 1971).

3.4 Transplacental exposure

3.4.1 Nickel acetate

Diwan et al. (1992) studied the carcinogenic effects of rats exposed transplacently to nickel acetate and postnatally to sodium barbital in drinking-water. Pregnant F344 were given nickel acetate by intraperitoneal injection, and their offspring were divided into groups receiving either tap water or sodium barbital in drinking-water. An increased incidence in pituitary tumours was observed in the offspring of both sexes transplacently exposed to nickel acetate. These tumours were mainly malignant, and are rare tumours. Renal tumours were observed in the male offspring exposed transplacently to nickel acetate, and receiving sodium barbital postnataially, but not in the male offspring receiving tap water after nickel in utero. See Table 3.4.

3.5 Synthesis

The inhalation of nickel oxide, nickel subsulfide, and nickel carbonyl caused lung tumours in rats. Intratracheal instillation of nickel oxide, nickel subsulfide, and metallic nickel caused lung tumours in rats. Lung tumours were observed by the intraperitoneal injection of nickel acetate in two studies in A/J mice, and by intramuscular injection of nickel subsulfide in mice. The inhalation of nickel oxide, nickel subsulfide, and metallic nickel caused adrenal medulla pheochromocytoma in rats. Transplacental nickel acetate induced malignant pituitary tumours in the offspring in rats. Several nickel compounds (nickel oxides, nickel sulfides, including nickel subsulfide, nickel sulfate, nickel chloride, nickel acetate, nickel sulfarsenide, nickel arsenide, nickel antimonide, nickel telluride, nickel selenide, nickelocene, and metallic nickel) administered by repository injection caused sarcomas in multiple studies. The inhalation of metallic nickel did not cause lung tumours in rats. The inhalation and oral exposure to nickel sulfate did not cause tumours in rats or mice. The inhalation of nickel subsulfide did not cause tumours in mice.

4. Other Relevant Data

4.1 Absorption, distribution, metabolism, and excretion

In rodents, nickel salts and nickel sulfides are absorbed through the lungs and excreted mainly in the urine (Benson et al., 1994, 1995a). After inhalation exposure to green nickel oxide, nickel is not distributed in extrapulmonary tissues, and is excreted only in faeces (Benson et al., 1994). In humans, soluble nickel compounds are rapidly absorbed through the lungs, and excreted in the urine. After inhalation exposure to insoluble nickel species, elevated concentrations of nickel are observed in the plasma and urine, but the absorption is slow (Bernacki et al., 1978; Tola et al., 1979).

In rats exposed to nickel sulfate hexahydrate by inhalation for 6 months or 2 years,
no pulmonary accumulation is observed; in a similar exposure scenario with nickel subsulfide, concentrations of nickel are detected in the lungs, with very slight nickel accumulation. Following the exposure of green nickel oxide to rats, the nickel lung clearance half-life is approximately 130 days, and in long-term exposure (NTP, 1996a, b, c; described in Section 3), a remarkable accumulation of nickel is observed (Benson et al., 1995b; Dunnick et al., 1995). The lung clearance half-life of nanoparticulate black nickel oxide in rats is reported as 62 days (Oyabu et al., 2007). The difference in the two clearance rates may be related to the greater water solubility (and the smaller particle size) of the nanoparticulate black nickel oxide. In mice, the observed clearance for nickel sulfate is fast, but for nickel subsulfide intermediate and for green nickel oxide, very slow (Dunnick et al., 1995).

4.1.1 Cellular uptake

Nickel chloride has been shown in different cell lines in culture to be transported to the nucleus (Abbracchio et al., 1982; Edwards et al., 1998; Ke et al., 2006, 2007; Schwerdtle & Hartwig, 2006). Soluble nickel chloride compounds enter cells via the calcium channels and by metal ion transporter 1 (Refsvik & Andreassen, 1995; Funakoshi et al., 1997; Gunshin et al., 1997; Garrick et al., 2006). Crystalline nickel sulfides are phagocytized by a large variety of different cells in culture (Kuehn et al., 1982; Miura et al., 1989; Hildebrand et al., 1990, 1991; IARC, 1990).

Black nickel oxide and nickel chloride are taken up by human lung carcinoma cell lines A549 in culture; the nucleus/cytoplasm ratio is > 0.5 for black nickel oxide, and < 0.18 for nickel chloride (Fletcher et al., 1994; Schwerdtle & Hartwig, 2006).

4.2 Genetic and related effects

The mechanisms of the carcinogenicity of nickel compounds have been reviewed extensively (Hartwig et al., 2002; Zoroddu et al., 2002; Costa et al., 2003, 2005; Harris & Shi, 2003; Kasprzak et al., 2003; Lu et al., 2005; Durham & Snow, 2006; Beyersmann & Hartwig, 2008; Salnikow & Zhitkovich, 2008).

Based on the uptake and distribution in cells described above, the ultimate genotoxic agent is Ni (II). However, direct reaction of Ni (II) with DNA does not seem to be relevant under realistic exposure conditions. Nevertheless, nickel is a redox-active metal that may, in principle, catalyze Fenton-type reactions, and thus generate reactive oxygen species (Nackerdien et al., 1991; Kawanishi et al., 2001). Genotoxic effects have been consistently observed in exposed humans, in experimental animals, and in cell culture systems, and include oxidative DNA damage, chromosomal damage, and weak mutagenicity in mammalian cells. These effects are likely to be due to indirect mechanisms, as described in detail below.

4.2.1 Direct genotoxicity

(a) DNA damage

Water-soluble as well as water-insoluble nickel compounds induce DNA strand breaks and DNA protein crosslinks in different mammalian test systems, including human lymphocytes. Nevertheless, in the case of DNA strand breaks and oxidative DNA lesions, these events mainly occur with conditions that involve comparatively high cytotoxic concentrations (IARC, 1990; Pool-Zobel et al., 1994; Dally & Hartwig, 1997; Cai & Zhuang, 1999; Chen et al., 2003; M’Bemba-Meka et al., 2005; Schwerdtle & Hartwig, 2006; Caicedo et al., 2007). This is also true for the induction of oxidative DNA base modifications in cellular systems. Nevertheless, oxidative DNA damage is also observed in experimental animals, this may
be due to repair inhibition of endogenous oxidative DNA damage.

The intratracheal instillation of several soluble and insoluble nickel compounds to rats significantly increases 8-hydroxydeoxyguanine (8-OH-dG) content in the lungs. Concomitantly, microscopic signs of inflammation in the lungs are also observed. Two distinct mechanisms are proposed: one via an inflammatory reaction and the other through cell-mediated reactive oxygen species formation (Kawanishi et al., 2001; Kawanishi et al., 2002).

(b) Chromosomal alterations

Water-soluble and poorly water-soluble nickel compounds induce sister chromatid exchange and chromosomal aberrations at toxic levels in different mammalian test systems (Conway et al., 1987; Conway & Costa, 1989; IARC, 1990; Howard et al., 1991). Chromosomal aberrations are most pronounced in heterochromatic chromosomal regions (Conway et al., 1987). Water-soluble and poorly water-soluble nickel compounds induce micronuclei at comparatively high concentrations. Because increases in both kinetochore-positive and -negative micronuclei are observed, these effects are likely due to aneugenic as well as clastogenic actions (Arrouijal et al., 1990, 1992; Hong et al., 1997; Seoane & Dulout, 2001). The induction of chromosomal aberrations and micronuclei in rodents treated with different nickel compounds is not consistent across studies (Sobti & Gill, 1989; Arrouijal et al., 1990; Dhir et al., 1991; IARC, 1990; Oller & Erexson, 2007). Enhanced frequencies of chromosomal aberrations were observed in some studies in lymphocytes of nickel-exposed workers (IARC, 1990).

(c) Gene mutations in bacterial and mammalian test systems

Nickel compounds are not mutagenic in bacterial test systems, and are only weakly mutagenic in cultured mammalian cells. Even though, mutagenic responses for both water-soluble and water-insoluble nickel compounds have been reported in transgenic G12 cells, this effect was later shown to result from epigenetic gene-silencing (Lee et al., 1995). Nevertheless, the prolonged culture of V79 cells after treatment with nickel sulfate results in the appearance of genetically unstable clones with high mutation rates together with chromosomal instability (Little et al., 1988; Ohshima, 2003).

(d) Cell transformation

Water-soluble and poorly water-soluble nickel compounds induced anchorage-independent growth in different cell systems (IARC, 1990), including the mouse-embryo fibroblast cell-line PW and the human osteoblast cell line HOS-TE85 (Zhang et al., 2003). Nickel compounds were shown to cause morphological transformation in different cell types (Conway & Costa, 1989; Miura et al., 1989; Patierno et al., 1993; Lin & Costa, 1994).

4.2.2 Indirect effects related to genotoxicity

As stated above, the direct interaction of nickel compounds with DNA appears to be of minor importance for inducing a carcinogenic response. However, several indirect mechanisms have been identified, which are discussed below.

(a) Oxidative stress

Treatment with soluble and insoluble nickel causes increases in reactive oxygen species in many cell types (Huang et al., 1993; Salnikow et al., 2000; Chen et al., 2003).

Increased DNA stand breaks, DNA–protein crosslinks and sister chromatid exchange are found in cells treated with soluble and insoluble nickel compounds, and these are shown to result from the increase in reactive oxygen species (Chakrabarti et al., 2001; Blasiak et al., 2002; Woźniak & Blasiak, 2002; M’Bemba-Meka et al., 2005, 2007).
Intraperitoneal injection of nickel acetate in rat did not cause any DNA damage in liver and kidney at 12 hours. However, oxidative DNA damage increased after 24 hours, and persisted in the kidney for 14 days (Kasprzak et al., 1997).

(b) Inhibition of DNA repair

The treatment of cells with soluble Ni (II) increases the DNA damage and the mutagenicity of various agents (Hartwig & Beyersmann, 1989; Snyder et al., 1989; Lee-Chen et al., 1993).

Soluble Ni (II) inhibits nucleotide-excision repair after UV irradiation, and the effect seems to be on the incision, the polymerization, and ligation steps in this pathway (Hartwig et al., 1994; Hartmann & Hartwig, 1998; Woźniak & Błasiak, 2004). One of the proteins in nucleotide-excision repair, the XPA protein, may be a target of Ni (II) (Asmuss et al., 2000a, b).

Soluble nickel chloride also inhibits base-excision repair. The base-excision repair enzyme, 3-methyladenine-DNA glycosylase II, is inhibited specifically (Dally & Hartwig, 1997; Woźniak & Błasiak, 2004; Wang et al., 2006).

There is some evidence that the enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inhibited by nickel chloride (Iwitzki et al., 1998).

(c) Epigenetic mechanisms

Both water-soluble and water-insoluble nickel compounds are able to cause gene silencing (Costa et al., 2005). This effect was first found when “mutations” in the transgenic gpt gene in G12 cells were found to be epigenetically silenced rather than mutated (Lee et al., 1995). Genes that are located near heterochromatin are subject to such inactivation by nickel. The gpt gene was silenced by DNA methylation. Additional studies show that cells treated with nickel have decreased histone acetylation, and altered histone methylation patterns (Golebiowski & Kasprzak, 2005; Chen et al., 2006). Nickel also causes ubiquination and phosphorylation of histones (Karaczyn et al., 2006; Ke et al., 2008a, b). Permanent changes in gene expression are important in any mechanism of carcinogenesis.

4.3 Synthesis

The ultimate carcinogenic species in nickel carcinogenesis is the nickel ion Ni(II). Both water-soluble and poorly water-soluble nickel species are taken up by cells, the former by ion channels and transporters, the latter by phagocytosis. In the case of particulate compounds, nickel ions are gradually released after phagocytosis. Both water-soluble and -insoluble nickel compounds result in an increase in nickel ions in the cytoplasm and the nucleus. Nickel compounds are not mutagenic in bacteria, and only weakly mutagenic in mammalian cells under standard test procedures, but can induce DNA damage, chromosomal aberrations, and micronuclei in vitro and in vivo. However, delayed mutagenicity and chromosomal instability are observed a long time after treatment of cells with nickel. Nickel compounds act as co-mutagens with a variety of DNA-damaging agents. Thus, disturbances of DNA repair appear to be important. A further important mechanism is the occurrence of epigenetic changes, mediated by altered DNA methylation patterns, and histone modification. Inflammation may also contribute to nickel-induced carcinogenesis.

5. Evaluation

There is sufficient evidence in humans for the carcinogenicity of mixtures that include nickel compounds and nickel metal. These agents cause cancers of the lung and of the nasal cavity and paranasal sinuses.

There is sufficient evidence in experimental animals for the carcinogenicity of nickel monoxides, nickel hydroxides, nickel sulfides (including
nickel subsulfide), nickel acetate, and nickel metal.

There is limited evidence in experimental animals for the carcinogenicity of nickelocene, nickel carbonyl, nickel sulfate, nickel chloride, nickel arsenides, nickel antimonide, nickel selenides, nickel sulfarsenide, and nickel telluride.

There is inadequate evidence in experimental animals for the carcinogenicity of nickel titanate, nickel trioxide, and amorphous nickel sulfide.

In view of the overall findings in animals, there is sufficient evidence in experimental animals for the carcinogenicity of nickel compounds and nickel metal.

Nickel compounds are carcinogenic to humans (Group 1).

References

Fletcher GG, Rossetto FE, Turnbull JD, Nieboer E (1994). Toxicity, uptake, and mutagenicity of particulate and...

Huang X, Frenkel K, Klein CB, Costa M (1993). Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein

Nickel and nickel compounds

NTP (1996c). *NTP Toxicology and Carcinogenesis Studies of Nickel Oxide (CAS No. 1313–99–1) in F344 Rats and B6C3F1 Mice (Inhalation Studies)*, 451:1–381.

Rodriguez RE, Misra M, Diwan BA et al. (1996). Relative susceptibilities of C57BL/6, (C57BL/6 x C3H/He) F1, and C3H/He mice to acute toxicity and carcinogenicity of nickel subsulfide. *Toxicology*, 107: 131–140. doi:10.1016/0300-483X(95)03251-A PMID:8599172

