Tobacco Smoking

References to Supplementary Web Tables, Section 2


Hirayama T (1967). Smoking in Relation to the Death Rates of 265118 Men and Women in Japan, Tokyo, National Cancer Center, Research Institute.


Kim JI, Park YJ, Kim KH et al. (2003). hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gastroenterol, 9:956–960. PMID:12717837


Saebø M, Skjelbred CF, Brekke Li K et al. (2008). CYP1A2 164 A→C polymorphism, cigarette smoking, consumption of well-done red meat and risk of developing colorectal adenomas and carcinomas. Anticancer Res, 28 4C:2289–2295. PMID:18751408


Schlecht NF, Franco EL, Pintos J, Kowalski LP (1999b). Effect of smoking cessation and tobacco type on the risk of cancers of the upper aero-digestive tract in Brazil. Epidemiology, 10:412–418. PMID:10401876


Soya SS, Vinod T, Reddy KS et al. (2007). Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer, 43:2698–2706. PMID:17707637


Ulrich CM, Bigler J, Whitton JA et al. (2001). Epoxide hydrolase Tyr113His polymorphism is associated with elevated risk of colorectal polyps in the presence of smoking and high meat intake. Cancer Epidemiol Biomarkers Prev, 10:875–882. PMID:11489754

van der Hel OL, Bueno de Mesquita HB, Sandkuijl L et al. (2003). Rapid N-acetyltransferase 2 imputed phenotype and smoking may increase risk of colorectal cancer in women (Netherlands). Cancer Causes Control, 14:293–298. doi:10.1023/A:1023601922106 PMID:12814209


